Chapter 2

Statistical Learning

In this chapter we will examine the application of a statistical learning technique to
the acquisition of phonotactic models. The learning technique which we will use is
called Hidden Markov Models. The chapter will start with an introduction to stan-
dard Markov models. After this we will examine the more elaborate Hidden Markov
Models (HMMs). The experimentswe will perform with HMMs have been divided in
two groups. The first group of experiments consists of test experiments with a small
data set. With these experiments we will try to find out what restrictions we have to
impose on the HMMs and their training datain order to be able to make them acquire
phonotactic knowledge. These experimentswill be discussed in the third section. The
fourth section will present the results of the HMM s that were applied to our main data
set. The final section of the chapter will give some concluding remarks.

1 Markov models

Before discussing the Hidden Markov Models, we will present the standard Markov
models. We start with a general description of these models. After this we will in-
troduce two basic algorithms which are used in connection with Markov models: the
forward procedure and the Viterbi algorithm.

1.1 General description of Markov models

A Markov model is a model consisting of states and weighted transitions. The task
of a Markov model is recognizing or producing sequences. An example of a Markov
model is shown in figure 2.1. It shows some popular target locations in a tourist walk

27

28 chapter 2

10

City Hall Martini Tower

Car-park

0.2
0.2

Museum

0.9

Railway Station

0.1

Figure2.1: The City Walk Markov Model: A Markov model for atourist walk through
the city of Groningen. The states modeling locations are represented by filled circles
and the transitions by arrows connecting them. The weights indicate the probability
of moving from one state to another, e.g. when you are in the Museum the probability
of moving to the Martini Tower is 0.5.

through the city of Groningen: the Museum (MU), the City Hall (CH) and the Martini
Tower (MT). People start their walk from the Railway Station (RS) or from the Car
park (CP).

These five locations are represented as states in the model. The weights of the
links between the states indicate the probability that a visitor of a certain location will
go to another location. 60% of the people present in the Car park at timet will bein
the Museum at timet+1 (0.6 link). All peoplein the City Hall will walk to the Martini
Tower (1.0 link) and no people present in the Martini Tower will continue their walk
by visiting the Railway Station next (no link). The starting locations of the walk are
marked with links that start from outside the model. The probability that awalk starts
inthe Car park is20% (0.2 link) and the probability that it startsin the Railway Station
is80% (0.8 link). A walk ends when the outward link from Car park (0.1) or Railway
Station (0.1) is used.

The parameters of a Markov model can be arranged in matrices. One matrix, the
A-matrix, contains the probabilities that concern the weights of internal links and an
element a;; of this A-matrix indicates the probability that a transition between state i
and state j will be made. The II-matrix contains the probabilities of starting in states
so 7r; indicates the probability that a Markov process startsin statei. Figure 2.2 shows

Markov models 29

0.00 090 0.00 0.00 0.00 0.80
0.40 000 0.10 0.50 0.00 0.00
A= 000 060 0.00 030 000 | II=] 0.20
0.00 0.20 0.10 0.00 0.70 0.00
0.00 0.00 0.00 1.00 0.00 0.00

Figure 2.2: Parameter definition of the City Walk Markov Model®. In the A-matrix a
horizontal row 4 contains the probabilities of leaving state ¢ and moving to a state j.
The order of the states is <Railway Station, Museum, Car park, Martini Tower, City
Hall> The II-matrix contains the probabilities of starting in state i. Examples. The
probability of moving from the Museum to the Railway Station is 0.40 (coordinate 2,1
in the A-matrix) and the probability of starting in the Car park is 0.20 (third number
in IT-matrix.

the matrix representation for the City Walk Markov Model.

1.2 Theforward procedure

Now suppose that the peoplethat are engaged in awalk change location once an hour.
What would be the probability that someone is in the Martini Tower after a walk
of two hours? If we want to compute this probability we have to find out al paths
from starting locations that reach the Martini Tower in two steps. Then we have to
compute the probabilities of these paths and compute their sum. Thiswill give us the
probability we are looking for.

Inspection of figure 2.1 reveals that there are two paths possible from one of the
starting locations which reach the Martini Tower in two steps: Car park — Museum
— Martini Tower and Railway Station — Museum — Martini Tower. The probability
of starting in Car park is 0.2, moving from Car park to Museum has probability 0.6
and moving from Museum to Martini Tower 0.5. Therefore the probability of the first
pathis 0.2 x 0.6 x 0.5 = 0.06. In a similar fashion we can compute the probability
of the second path: 0.8 * 0.9 x 0.5 = 0.36. The probability that someone is in the
Martini Tower after awalk of two hoursis equal to the sum of these two probabilities:
0.06 + 0.36 = 0.42.

The general procedure that is used for computing the probability that a Markov
model will bein astate s at atime¢ is called the FORWARD PROCEDURE: a,(t). The
definition of this procedureis:

11n general the A-matrix and the TI-matrix satisfy the properties Zj Ali,j] = land)" T[i] = 1.
The first property is not satisfied by this A-matrix because we did not include the two model-leaving 0.1
arcsin the matrix. We will elaborate on thisin section 3.1.

30 chapter 2

as(t) = the probability of being in state s at time t.
Qs (O) = Ts (21)
as(t+1) = Z as, (t) * agy 5 (22

k

Equation 2.1 defines that at time O the probability of being in a state sis equal to the
probability of starting in state s. We can compute the probability of being in a state s
at time point t+ 1 if we know the probability of being a state at time't. First we haveto
multiply the probability of being in a state k with the weight of the link between state
sk and state s. After this we have to compute the sum of all these products (eguation
2.2). Weights of non-existent links are defined to have value 0.

The forward procedure can be used for computing the probability that someoneis
in the Martini Tower after awalk of two hours. The procedure value we are looking
for is aarr(2). We start with computing all a5(0). With these values we compute all
a,(1) valueswhich in turn can be used for computing aarr (2).

Ost(O) = 7TRS:0.8
Oécp(O) = 7rcp:0.2

All other a5(0) are equa to O because the probability of starting in these states (n5)
is 0. In the following equations we will assume that the states are ordered, that is:
s1=Railway Station (RS), s,=Museum (MU), s3=Car park (CP), s,=Martini Tower
(MT) and s5=City Hall (CH). Now the next step is:

ars(l) = Y 05,(0)*ay, s =0
k

> @5, (0) * ag, mu =

%
ars(0) xags,mu + acp(0) * acpmu =
= 08x%x09+02%x0.6=0.84

acp(l) = Y a4(0)*as,cp=0
k

Z s, (0) x ag, T =

k

amu (1)

aMT(l)

acp(0) * acp,mT =
0.2%x0.3=0.06

acp(l) = Zask(O)*askicHzo
k

Markov models 31

aleave(l) = Z Qg (O) * gy, leave =
k
= ags(0) * ars,eave + @cP(0) * acPleave =
= 08x01+02x0.1=0.1

There are no links from starting locations to the states Railway Station, Car park and
City Hall. These locations cannot be reached in one step so their a;(1) valueis equal
to 0. The Martini Tower state can be reached from the Car park state in one step and
the Museum state can be reached from both the Railway Station state and the Car park
state. They have an a;(1) value which is larger than 0. The leave state stands for
leaving the city.

With the values of theforward procedurefor time 1 we can now compute a1 (2):

aur(2) = Z s, (1) * ag, mT =
3
amu (L) *apmumT =
= 0.84x05=0.42.

The Martini Tower can only be reached in two steps from one of the starting locations
if the first step takes the tourist to the Museum. The probability a7 (2) is egud to
the one we have computed earlier.

By using the forward procedure we can speed up the computation of the probabil -
ity of being in astate s at timet. For example, suppose that we haveto perform such a
computation for aten-state Markov Model in which all states are connected with each
other and in which each state can be a starting state. Suppose that we want to know a
probability at time 10. If we compute this by summing the probabilities of al possible
paths to the state we will get into trouble. We can start in ten different states (time 0)
and at each new time point we can move to ten different states. This means that there
are 10%° different paths to a state at time 10. Since every path from time 0 to time 10
requires 10 multiplications, we will need 10*10'°=10%. multiplicationsin order to
compute the probability in this fashion.

With the forward procedure we can simplify this computation. At each time step
we can compute each a,(t) with 10 multiplications (see equation 2.2). There are 10
a4(t), so at each time step we will need 102 multiplications. For a probability at time
10 we will need 9 of those sets of multiplications and 10 additional multiplicationsfor
the final time dlice. In total we need 910 multiplications with the forward procedure
compared with the 10'* multiplications with the naive method.

1.3 TheViterbi algorithm

Now suppose that the city council wanted to put signs along a popular walk through
Groningen. The budget of the council is limited, and they only have enough money

32 chapter 2

for awalk passing four locations. They want as many people as possible to see the
signs so they want to know what four-step path starting from a starting location is the
most likely one.

In total there are 48 4-step paths starting in one of the two initial positions. If
we compute the probability of each of these paths, we will find out that the path
Railway Station — Museum — Martini Tower — City Hall — Martini Tower is the
most probable 4-step path (probability 0.252). We saw in the previous section that
the number of paths can become quite large. In fact, the number of possible paths
increases exponentially as path length increases. For longer paths computing the most
likely one in this manner will take a lot of effort. Fortunately a good computational
method exists for computing the most probable path: the VITERBI ALGORITHM. Its
definition is:

ds(t) = the probability of the most likely path arriving
in state s at time t.
5(0) = m, 23)
ds(t+1) = mazxg(ds, (t) * as,) (2.9)

The probability of the most likely path to astate at time 0 is equal to the probability of
starting in that state (equation 2.3). Probabilities at other time points can be computed
by using the probabilities of the previoustime points (equation 2.4). Partial paths that
cannot contribute to the most likely path are pruned by the max function. The Viterbi
algorithm can be used to find out the most likely four-step path in the City Walk
Markov Modél. In this example it will have to compute 5* 5=25 probabilities instead
of the 48 probability computations that were necessary with the previous method. We
start with computing 6, (0):

drs(0) = mrs=0.8
Sop(0) = mop =02

The other 65(0) are equa to 0 and have been left out. We continue by computing
d5(1):

Suu(l) = mazg(ds, (0) * as, mu) =
= maz(drs(0) * ars,muU,
dcp(0) xacp,mU) =
= maz(0.8%0.9,0.2%0.6) = 0.72
dur(l) = mazk(ds, (0) * as,,mT) =
= dcp(0) x acp,Martini Tower =
= 0.2x0.3=0.06

Markov models 33

Again, the other §,(1) are equal to zero and have been left out. We will not compute
dreave () because the probability of leaving the Markov model has no influence on
the probabilities at later time points; in this model people that leave the city are not
coming back. Here are the computationsfor d,(2)

0rs(2) = mazg(ds, (1) * as,,rs) =
= duv(1) *amu,rs =
= 0.72%x0.4 = 0.288
mazy(9s, (1) * as,, mu) =
dprr (1) * apr,mu =
= 0.06%x0.2=0.012
mazy(0s, (1) * ag,,cp) =
= maz(0yu(l) * amu,cp,
dur (1) * amT,cP) =
= maz(0.72%0.1,0.06 x 0.1) = 0.072
dur(2) = mazg(ds, (1) * as,,mT) =
dmu (1) xapu,mr =
0.72x0.5=0.36
oca(2) = maxr(ds, (1) *as,,ca) =
= Odmr(1) *amr,cH
= 0.06x0.7=0.042

dmu(2)

dop(2)

The computations of d,(3) and d,(4) can be performed in a similar fashion. We will
not list the complete computations here but confine with the results:

0rs(3) = 0.0048
Smu(3) = 0.2592
scp(3) = 0.036
dur(3) = 0.042
Scn(3) = 0.252
drs(4) = 0.10368
Smu(4) = 0.0216
Scp(4) = 0.02592
Sur(4) = 0.252
Scrr(4) = 0.0294

34 chapter 2

Location Likes(L) | Didlikes(D)
Railway Station 0.7 0.3
Museum 05 0.5
Car park 0.1 0.9
Martini Tower 0.9 0.1
City Hall 0.8 0.2

Figure 2.3: The probahilities of liking locations in the City Walk through Groningen.
Probabilities are only dependent on the currently visisted object. We assume that
previously visited locations do not influence the opinion of the tourists. Example:
the probability that someone that visited the Martini Tower disliked it is 0.1 and the
probability that the person liked it is 0.9.

As we can see dprr(4) has the largest value (0.25200) so the path starting at the
Railway Station and ending at the Martini Tower is the most likely path containing 4
steps. This §-value only gives us the final point of this path. If we want to know the
other locations present in the path, we will have to trace back the equations: §,7(4)
most probable ancestor was d¢ g (3), its most probable ancestor was dr7(2) which
on its turn was preceded by 6,71 (1) and §rs(0). So the most probable four-step path
is Railway Station — Museum — Martini Tower — City Hall — Martini Tower and
its probability is 0.252.

2 Hidden Markov Models

In the previous section we have examined Markov models. In this section we will
present an extended version of these models: Hidden Markov Models. We will give
ageneral description of these models and present the adapted versions of the forward
procedure and the Viterbi algorithm which are used in Hidden Markov Models. After
this we will describe how they can learn and how they can be used in practice.

2.1 General description of Hidden Markov Models

A researcher of the University of Groningen dedicates himself to finding out if people
that take part in a city walk through Groningen like the locations they visit. To find
the answer to this question he makes people fill in forms in which they are asked if
they like the locations they have visited. The results of these forms are summerized in
thetablein figure 2.3.

The probability that someone likes the Railway Station (L) is 70% while the prob-
ability that the person does not like it (D) is 30%. All other probabilities are listed in
the table. Now every walk through Groningen can be represented by a sequence con-

Hidden Markov Models 35

0.70 0.30
0.50 0.50
B=| 010 0.90
0.90 0.10
0.80 0.20

Figure 2.4: An Extension of the parameter definition of the City Walk Markov Modd:
the B-matrix. In this matrix an entry b, ;, represents the probability that in state s;
token ¢; can be produced. Example: the probability of producting L (like, ¢1) in the
Car park state (s3) is0.10 and the probability of producing D (dislike, ¢2) in the same
state is 0.90. The A-matrix and the II-matrix remain unchanged.

taining the tourist’s opinion about the different locations. For example, if the previous
most-probable walk Railway Station — Museum — Martini Tower — City Hall —
Martini Tower was made by someone who likes the Martini Tower and the Museum
but does not like the Railway Station, the Car park and the City Hall, we would get
the sequence DLLDL.

The DL-sequences are an interesting by-product of the City Walk model. They are
not in a unique correspondence with state sequences. For example awalk consisting
of Car park — Martini Tower — Museum — Railway Station — Museum taken by
the same tourist can aso be represented with the sequence DLLDL. Furthermore,
the same walk of a tourist that likes all locations can be represented by LLLLL. So
different walks can be represented with the same DL-sequences and the same walk
can generate different DL -sequences when made by different tourists.

It is possible to extend Markov Models to make them simulate this behavior. In
order to do that we define that in a state of the model different tokens can be produced.
The probabilities that tokens are produced will be stored in a new parameter matrix
of the model: the B-matrix (figure 2.4). In this matrix an entry b,, ;. represents the
probability that in state s; token ¢; can be produced. The other model parameters
incorporated in the A-matrix and the IT-matrix remain the same asin figure 2.2.

Now we have obtained aHIDDEN MARKOV MODEL (HMM). Themodel iscalled
hidden because from the token sequences generated by the model it isin genera im-
possible to find out which states were passed through while generating the sequence.
In the specific example of the City Walk Markov Model different state sequences
could lead to the same DL -sequence. Therefore it was impossibleto find out the state
seguence used if we only know atoken sequence.

2.2 Theextended forward procedure

We have presented the forward procedure and the Viterbi algorithm for Markov mod-
els by asking two questions. We will do the same for the related functionsfor HMMs.

36 chapter 2

Our first Markov model question can be rephrased to: what is the probability of being
at the Martini Tower after a walk of two hours in which the tourist did not like the
starting location but in which he did like the second and the third |ocation? In Hidden
Markov Model terms, what is the probability of being at state Martini Tower after two
steps while having produced token sequence DL L ? We cannot use the forward proce-
dure for Markov Models for computing this probability because it does not take into
account the token production probabilities. A function that uses these probabilitiesis
the EXTENDED FORWARD PROCEDURE:

as(t,zo..ty) = the probability of being in state s at time t
after producing sequence Zo..Ts
0as(0,20) = 75 xbg g (2.5)
as(t+ 1, 20..2441) = Z Qg (t, 20..7¢) * Ay s % b,y (2.6)

k

The probability of producing atokenin astate at timet = 0isequal to the probability
of starting in that state multiplied with the probability of producing the token in the
state (equation 2.5). The probability of producing atoken z;41 in statesat timet + 1
is equal to the sum of al values of the forward procedure for time ¢ and state sy,
multiplied with the probability of moving from state s;, to s and the probability of
producing z:+1 in s (equation 2.6). Note that the extended forward procedure usesthe
probabilities of all tokens up to the current one. So the probability computed by this
function is not only dependent on the current token but also on all previous tokensin
the sequence.

We can use the extended forward procedure for answering the question we men-
tioned at the start of this section:

ars(0,D) = wrs*brsp=
= 0.8x0.3=0.24
acp(0,D) = mcop*bopp =
= 0.2x09=0.18
amu(L,DL) = Y @5,(0,D) x ag mu * buu,p =

k
= aRs(O, D) * ARS,MU * 0.5+ ac’p(o, D) * A0 P,MU * 05=
0.24%x0.9%x05+ 0.18*% 0.6 x 0.5 =0.162
aur(L,DL) = Y @5,(0,D) * as, mr * bur, =
k
= Oécp(o, _D) * AcP,MT * 0.9 =
= 0.18%x0.3%x0.9=0.0486

Hidden Markov Models 37

All a4(0, zo) and a, (1, zo..2z1) Which are equal to 0 have been left out. Now we can
compute the probability we are looking for:

ayr(2,DLL) = Z 05, (L, DL) * as,, 7 * bur,r. =
&
= aMU(l, DL) *aMU,MT *0.9=

= 0.162%0.5%0.9=0.0729

The probability which is the result of this computation is smaller than the as1(2)
which was computed for the Markov Models (0.42) because of the multiplications
with the token production probabilities (bs, ¢, <1).

2.3 Theextended Viterbi algorithm

We can also rephrase our second Markov Model question for Hidden Markov Models:
what is the most probable two step walk in which the tourist liked all locations? Or
in Hidden Markov Models terms what is the most probable path corresponding with
the sequence LLL? We cannot use the Viterbi algorithm for Markov Models because
it does not include token production probabilities. We have to adapt this function to
obtain the EXTENDED VITERBI ALGORITHM:

0s(t,x0..w¢) = the probability of the most likely path
ending in state s and producing token
sequence To..T¢
05(0,20) = T *bs g 2.7
Os(t + Lzo..w41) = mazg(0s, (¢, T0..%¢) * Ggy 5 * bs z,,1) (2.8)

The probability of the most likely path that ends in state s and produces a sequence
containing one token z is equal to the probability of starting in s multiplied with the
probability of producing zo in s (equation 2.7). The probability of the most likely
path ending in s for alonger sequence is the maximal value that can be obtained by
multiplying the probability of the most likely path for the prefix of the sequence with
the probability of moving from the final state sy, of the prefix to s and the probability
of producing the current token in s. The computation this extended Viterbi agorithm
performs is sequence-specific just as the computation of the extended forward proce-
dure.

This extended Viterbi algorithm can be used for finding out the most probable
state path corresponding with the sequence LLL. First we compute the values of the
d-function for timet = O:

38 chapter 2

drs(0,L) = 7Rrs*brs.L =
= 0.8%x0.7=0.56

écp(0,L) = mcpxbopr =
= 0.2%x0.1=0.02

We can use values for computing the values of the functionsfor ¢ = 1.

dmu(,LL) = mazg(ds, (0,L) % as, mu *bvu,r) =
= maz(0rs(0,L) x ars,mu * 0.5,0cp(0, L) * acp,mu * 0.5) =
= maz(0.56 % 0.9 % 0.5,0.02 x 0.6 x 0.5) = 0.252
dmr(L,LL) = mazxk(ds, (0,L) * as,, m * brrr,) =
= dcp(0,L) *xacp,mT *0.9 =
= 0.02x%0.3x0.9 = 0.0054

The 65(0, L) and 65(1, LL) that are equal to zero and have been left out. With these
results we can compute al §,(2, LLL):

Srs(2, LLL)

mazy (05, (1, LL) * as, rs * brs,) =
O0mu(1,LL) * apry,ps * 0.7 =
0.252 x 0.4 x 0.7 = 0.07056
dmu(2,LLL) = maxy(ds, (1, LL) * as,,, mu * bmu,n) =
O0mr(1, LL) * aprr,mu % 0.5 =
0.0054 0.2 « 0.5 = 0.00054
d0cp(2,LLL) = mazk(ds,(1,LL) * as, cp) *bepr, =
= maz(dpmu(1,LL) *x apu,cp * 0.1,
dmr(1,LL) x apr,cp *0.1) =
= max(0.252x 0.1 0.1,0.0054 « 0.1 x 0.1) = 0.00252
O0mr(2,LLL) = max(ds, (1, LL) * as, pr * barr,n) =
0mu (L, LL) * apy,mr % 0.9 =
0.252%0.5%x0.9=0.1134
d0ca(2,LLL) = mazy(ds, (1, LL) * as,,cH *bcH,L) =
Oomr(1,LL) x apr,cr *0.8 =
= 0.0054 % 0.7 * 0.8 = 0.003024

Hidden Markov Models 39

From these computation we can conclude that the most probable path that produces
LLL endsin the Martini Tower. We can find out the previous locations by checking
what state was used in the maximal part of the dyr7(2, LLL) computation and this
turns out to be the Museum (8517 (1, LL)). The location before that can be found
by checking what state was used in the maximal part of the d7(1, LL) computa
tion. This turns out to be the Railway Station (drs(0, L)) so the most probable path
producing LLL is Railway Station — Museum — Martini Tower.

24 Learningin aHidden Markov Model

Now suppose that in some distant country a group of engineers decides to rebuild the
main tourist attractions of Groningen. The engineers also want to enable the visitors
of New Groningen to experience the famous City Walk through Groningen. Unfortu-
nately, the engineers do not know what the main buildings look like and which build-
ings were connected with each other. The only feature about the City Walk they were
ableto collect isalist of DL-sequencesthat were produced by participantsin the City
Walk through Groningen. The engineers decide to set up some wooden barracks with
roads connecting them to each other and make tourists walk through thisvillage. The
tourists al take with them a form in which they mention what locations they visited
and whether they liked the location. If the tourists thus produce a DL -sequence that
isin the list the engineers are trying to reproduce, the engineers will do nothing. If,
however, the DL-sequenceis not in the list the engineers start improving or damaging
the buildings and the roads. This process continues until the tourists only produce
seguences that are in the list. The engineers have then succeeded in reproducing the
City Walk through Groningen and they have succeeded in reconstructing the underly-
ing Hidden Markov Model asfar as the production of DL-sequencesis concerned.

The problem of finding a Hidden Markov Model which produces a specific set of
token sequences is a common task. Our goa is to obtain a Hidden Markov Model
that produces sequences of characters. The model should assign high probabilitiesto
seguences that are words in some language and low probabilities to sequences that
cannot appear as words in the language. Note that we are not aiming at reproducing
the exact underlying model for the language. We will try to find a model that behaves
like the underlying language model. Like the engineers of New Groningen we only
know the token sequences produced by the model we are trying to rebuild. We will be
satisfied if we succeed in creating a model that is able to reproduce our data.

The problem is that there is no direct method for computing the parameters (the
matrices A, II and B) of a Hidden Markov Model that is able to produce a specific set
of sequences with a large probability. Fortunately, there are methods for estimating
the values of the parameters of such a Hidden Markov Model. The most well-known
method for estimating the parameters of a Hidden Markov Model from a set of se-
guencesiscalled the BAUM-WELCH ALGORITHM or theforward-backward algorithm
which has been described in (Rabiner et al. 1986) and (Van Alphen 1992) among oth-
ers. Thisalgorithm consists of three steps:

40 chapter 2

1. Initialize the Hidden Markov Model with random parameter values.

2. Make the Hidden Markov Model compute the probability of every sequencein
the set. During this computation we count how often transitions between states
are used and how often tokens are being produced in each state. We use the
resulting numbers for computing a new set of parameters.

3. We use the new parameter values for reinitializing the Hidden Markov Model.
The new Hidden Markov Model will assign a higher probability to the set of
training strings. Now we repesat step 2 and 3 until the behavior of the Hidden
Markov Model stabilizes.

There are different methods for deciding when a HMM has become stable. We will
discussthesein alater section. It is possible to prove that the Baum-Welch algorithm
terminates so we can be sure that the algorithm will always be able to produce a stable
HMM in a finite amount of time. The proof is complex and we will not list it here.
Interested readers are referred to section 5.4 of (Huang et al. 1990)

The most complex step of the Baum-Welch algorithm is step 2. We will formalize
this step by using the extended forward procedure (see equations 2.5 and 2.6) and
three other algorithms we will introduce in this section. Our goal isto find new values
for the HMM parameters a;;, bs, ., and m,,. The definitions of these parameters are:

a _ probability of making a transition from s; to s; 2.9

Fis%i probability of being in state s; '

probability of being in s; while producing token m
probability of being in state s;

ws;, = probability of being in state s; at time 0 (2.11)

i

(2.10)

bs,-,m

In equations 2.9 and 2.10 it is necessary to divide the numerator probabilities by the
probability of being in state s; to make sure that for each s; al as, s, add up to 1 and
al bs;,m add up to 1. In order to be able to compute new values for the A-matrix, we
should be able to compute the probability that in a production of a sequence a specific
transition between two states will be made. We can view the production of a sequence
as consisting of three steps: the production of the current token, the production of the
prefix of this token and the production of the suffix of the token.? We have an algo-
rithm that models the production of the prefix of atoken: the forward procedure. The
first algorithm we will introduce here is the BACKWARD ALGORITHM: an agorithm
that models the production of the suffix of atoken (e isthe empty sequenceand T is
the time at which the final element of the sequenceis produced):

2|n this chapter we do not use prefix and suffix as the linguistic terms. For us the prefix of a sequence
is the subsequence from the start to the current token (non-inclusive) and the suffix a sequenceis the subse-
quence from the current token (non-inclusive) to the end of the sequence.

Hidden Markov Models 41

Bs; (t, Tey1..x7) = probability that a sequence Tyy1..21 is produced
while the state at time tis s;.
B, (Tye) = 1 (2.12)
Bs; (t, Tey1..x7) = Z Bs; (t + L xp42..27) * Qgy5; * s, 004 (2.13)

J

The backward algorithm is the counterpart of the extended forward algorithm. It com-
putes the probability that a suffix of asequenceis produced while starting in a specific
state (s;). The probability that the empty string is produced in state s; at time 7' is
defined to be equal to one (equation 2.12). If we know the probabilities of a sequence
which starts at time ¢ 4+ 1 in any of the states s; then we can compute the probability
of the same sequence preceded by some token at time ¢ and state s; by multiplying
the known value with the probability of moving from s; to s; and the probability of
producing z.41 in s; and adding &l these products together. Note thet in this defini-
tion the production of atoken isimagined as happening directly after the transition to
the state that produces the token. That is why equation 2.13 contains bs, ., ,, ad not
bs; 2, and why in 2.12 no token production has been taken into account.

We can combine the forward and the backward algorithm for computing the prob-
ability that the HMM assigns to a sequence:

Py(zo..xT) = probability assigned to sequence xo..xT by an HM M
Z a, (t, o..xy) * B, (t, Tyg1..27) (2.14)

i

Py (.’L‘o..SL'T)

Theterm ag, (¢, zo..z¢) * Bs; (t, Tr41.-27) computes the probability of being in state
s; at time t while producing sequence zo..z7. Equation 2.14 computes the sum for
all < which gives us the probability of producing sequence xo..z7 while being in an
arbitrary state s; at time¢. Thisis equal to the probability of producing the sequence
xo..z7. We can use Py (xo..z) for computing the probability of being in state s; at
timet:

vs;(t) = the probability of being in state s; at time t
s, (t, x0..0¢) * Bs, (t, Tey1..27)
(t) = L : 2.15
781 () Ph (ZUO--JUT) ()

We need to divide as; (¢, zo..x¢) * Bs; (¢, 2¢+1..z7) by the probability of producing
sequence zo..z7 in order to make sure that for each ¢ the v, (t) probabilities sum up
to 1. With this ~,, (¢t) and the equations 2.10 and 2.11 we are now able to compute
new valuesfor ms, and bs, m:

42 chapter 2

NU/@
Q/

Figure 2.5: The computation of s, (¢), the probability of being in state s; at time't
while producing the sequence z..x7. Compute the probability that the prefix of the
sequence endsin s; (as, (¢, zo..¢)), multiply it with the probability that the suffix of
the sequence startsin s; (8s, (¢, z¢+1..z7)) and divide the result by the probahility of
the sequence (P, (zo..zT)).

t+1

ms;, = probability of being in state s; at time 0 =
= 7(0) (2.16)
b _ probability of being in s; while producingm
8i,m - =

probability of being in state s;
2i{7s:(t) | @ =m}
2o Vsi (t)

The numerator of equation 2.17 computes the sum of al s, (¢t) for which z; = m
holds. The summations over t in equations 2.17 are necessary to take into account
al s, (t) (bs;,m isindependent of time). Apart from abling us to compute these two
HMM model parameters, s, (t) can also be used for computing the denominator for
equation 2.9. Now we have to develop afunction for computing the numerator of that
equation. We start by expanding equation 2.14:

(2.17)

Ph(xo...iL'T) = z asi(t,wo..mt)*,Bsi(t,xt+1..a:T) =

i
E as, (t, To..1¢) E ﬁs t+ 1, x4q0..x7) * Qs 55 % bsj oy =
i

Z Z ag, (t, mo..a:t) * g, 5 % bs; ooy * Bs; (t+ 1m0 27)
i
(2.18)

The first line is equal to equation 2.14 and in the second line we have applied the
definition of 8;, (¢, z¢+1..z7) (equation 2.13). By reordering the elements of that line

Hidden Markov Models 43

t+1 t+2

Figure 2.6: The computation of &, ;. (¢, z¢11), the probability of making atransition
from state s; to s;: Compute the probability that the prefix of the sequence endsin s;
(s, (t, zo..x¢)), multiply it with the HMM transition probability a,,, s, , the HMM to-
ken production probability b, .., and the probability that the suffix of the sequence
startsin s; (35, (t + 1, x¢42..27)) and divide the result by the probability of the se-
quence (P (xo..xT)).

(as, (t, zo..w¢) isindependent of j) we have derived the equation at the third line. We
have expanded the g-term in order to get a term within the sums in which both the
computation of the probability of making the transition from s; to s; (as,,s;) and the
production of token z;11 (bs; ¢,,,) are visible. We can use the fina part of equation
2.18 for computing the probability of making a transition from one state to another
(seedso figure 2.6):

sivs; (1, mep1) = probability of making the transition from state

s; to s; at time t and producing T41

as; (t, 20..T¢) * Qg 5; * bs; 2,40 * Bs; (t + 1L, 2442..27)
Py (zo..zT)

£Si,Sj (ta xt+l) =

(2.19)

Now we need to divide as, (t, To..w¢) * s, s; * bs; z,.1 * Bs; (t + 1, z412..27) by the
probability of producing sequence zo..zr in order to make sure that for every t the
&s:,5; (t, T¢41) probabilitiessum up to 1. Withthis&,, ,, (, z¢41) function we are now
able to compute the a,, ;; parameters of the HMM:

a _probability of going from s; to s; while producing yy1
8i,8; — -

probability of being in state s;

2y Seus(tTag) (2.20)

Zt Vs: ()

Again the summations over t are necessary to take into account all values of the func-
tions for different t (as,,s, isindependent of time). Now we have obtained formulas

44 chapter 2

for computing new values for HMM parameters. Our training process will start with
random values for the HMM parameters ay, ,;, by, and my,. We make the HMM
processthetraining dataand by using the equations 2.16, 2.17 and 2.20 we will be able
to obtain better values for the HMM parameters. We continue applying this process
until the probabilities that the HMM assigns to the training data become stable. At
that point we hope to have obtained an HMM which is a good model for the training
data

2.5 Using Hidden Markov Modelsin practice

In this section we have introduced the mathematical background of Hidden Markov
Models (HMMs). In the next two sections we will apply HMMs on training data
that consists of monosyllabic Dutch words. Instead of DL -sequences the HMMs will
process arbitrary sequences of characters. The HMMs will assign scores to these
seguences. Thisscoreswill be equal to:

Ph(Z'o..JET) = Z O, (t,.’L’o...’L'T) * (Ta e)
= Z as, (t, o..TT) (2.21)

i

Thisis the sum for all s; of the extended forward procedure applied at the complete
string of which the production ended in state s;. This equation was derived from
equation 2.14. (,,(T) isequd to 1 for al s; (equation 2.12). The HMM will be
trained by presenting the training data to it and applying the Baum-Welch algorithm
until the HMM becomes stable. Here we have defined a stable HMM as an HMM
that assigns scores to training strings that do not differ more than 1% of the scores
assigned by the HMM before the final training round. In each training round the
complete training data set will be processed.

When the HMM has become stable we will test it by applying it to the positive
and the negative test data sets that we have described in chapter 1. The HMM should
accept as many strings from the positive test data as possible and reject as many neg-
ative data as possible. We need to define a threshold score for deciding if a string is
acceptable or of it isnot. If a string receives a score that is higher than the threshold
scoreit will be accepted and if it islower than thisthreshold the string will be rejected.

The problem isthat different HMMswill assign different scoresto strings. There-
foreitisimpossibleto determine auniversal threshold value. Each HMM will reguire
its own threshold value. Since we want all strings in the training data set to be ac-
cepted we will definethe THRESHOL D SCORE as the smallest score that is assigned to
an element of the training data set.

Initial Experiments 45

3 Initial Experiments

We have performed three initial experiments to find out how we need to configure
the Hidden Markov Models (HMMs) in order to enable them to learn the phono-
tactic structure of monosyllabic Dutch words. In these experiments we have used a
small data set: 3507 monosyllabic Dutch words which were extracted from the Dutch
spelling guide (Spellingscommissie 1954). The HMMswere trained with 3207 words;
300 words were used as positive test data. The test data also contained an additional
set of 300 randomly generated words that were constructed by taking into account the
character frequencies and word length frequencies of the strings in the training data
and the positive test data. No effort was taken to remove strings from the random data
set that occurred in the training data or the positive test data. The data contained char-
acter representations of words rather than phonetic transcriptions. Three experiments
have been performed with HMMswhich contained seven states:

1. An experiment with standard data sets and random initial HMM parameter val-
ues.

2. An experiment with modified data sets and random initial HMM parameter val-
ues.

3. Anexperiment with modified datasetsand initial HMM parameter valueswhich
had been derived from a phonological model.

We have chosen a seven-state HMM rather than an HMM with any other number of
states because the linguistic model we have used for initializing the HMMs (the Cairns
and Feinstein model, see section 2.4 of chapter 1) also contains 7 states. Using HMMs
with the same number of states made the initialization process easier.

The next sections describe the results of these experiments.

3.1 A test experiment

In our first experiment we initialized the A, B and II matrices with random values.
Then we used the Baum Welch a gorithm to train the HM M. We stopped training when
the scores assigned by the HMM to the words in the training set did not change more
than 1% compared with the values after the previous training round. The parameters
of the HMM after training can be found in figure 2.7.

In HMMsthe probabilities of the outgoing transitions of each state haveto sum up
to 1. In thisHMM thisis not the fact. The reason for thisis that this HMM does not
handle word boundaries explicitly. For example, the outgoing transitions probabilities
of the first state (top row A-matrix) sum up to 98%. This means that the probability
of leaving the model after visiting state s1 is 2%.

Because of this implicit handling of the word boundaries the scores assigned to
wordswere worthless. The HMM will never assign prefixes of a sequence a scorethat
is smaller than the sequence itself because the score of sequence + x is computed

46 chapter 2

[0.04 0.94 0.00 0.00 0.00 0.00 0.00 [0.93
0.00 051 031 0.00 0.06 0.02 0.00 0.01
0.00 000 0.00 0.15 0.25 0.00 0.00 0.00
A= | 000 0.00 0.00 0.00 020 0.00 0.00 | II=| 0.00
0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.06
0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00
| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | 0.00 |

Figure 2.7: Parameter definition of the test HMM after training. The B Matrix is
omitted. Apart from the backward connection from state 6 to state 1 (0.37) the HMM
contains forward links only. The probabilitiesin the rows of the A-matrix do not add
up to 1 because word boundaries were handled implicitly.

by multiplying the score of sequence with the probability of 2 (a number with 1 as
maximal value). For example, rot will receive a larger score than rots and rots itself
will receive a larger score than rotst. After merging the test results with the random
resultswe discovered that, apart from two exceptions, all words of length n+1 received
a smaller score than words of length n. This means that the HMM will consider
impossible four-character strings more probable than valid five-character words. This
clearly iswrong. Of course, in natural languageit is not always the fact that acomplex
suffix islessimprobable than asimple suffix. For example, in Dutch asyllable ending
in the character c is more improbable than a syllable ending in ch. Some way has to
be found to model this fact.

To handle this problem we have added an end-of-word character to all words in
our training and test data. This extracharacter can only be the output of an eighth state
in the HMM. After processing a word the HMMs have to be in this last state. This
state is a so-called null state ((Van Alphen 1992)): no transitions are possible from
this state. The eighth state has not been made visible in the pictures in this chapter.
All transition probabilities from the other states to the last state have been put in a
special vector 2 (analogous to the IT vector, compare figure 2.7 with 2.8).

3.2 Orthographic data with random initialization

Our next experiment was similar to the previous apart from the fact that we have used
modified data sets (with end-of-word characters). Againthe A, B, Q and IT matrix of
a seven-state HMM were initialized with random values. The Baum Welch algorithm
(see section 2.4) was applied repeatedly until all training pattern scores stayed within
a 1% distance of the previous scores which required 51 training rounds. The result
of thiswasan HMM (seefigure 2.9) without backward transitions (see figure 2.9, the
initial HMM contained some backward transitions). The character output of the states
was interesting. Hereisalist of characters which are most likely to be the output of

Initial Experiments

0.19
0.00
0.00
0.00
0.00
0.00
0.00

0.64
0.00
0.00
0.00
0.00
0.00
0.00

0.16
0.33
0.00
0.00
0.00
0.00
0.00

0.01
0.67
1.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.68
0.01
0.00
0.00

0.00
0.00
0.00
0.25
0.81
0.00
0.00

0.00
0.00
0.00
0.06
0.13
0.27
0.28

[0.17
0.68
0.12
0.03 | =
0.00
0.00

| 0.00 |

47

[0.00 T
0.00
0.00
0.01
0.05
0.73

| 0.72 |

Figure 2.8: Parameter definition of the randomly initialized HMM after training. The
HMM does not contain backward links. The elements of each row in the A-matrix
together with the corresponding element in the Q2-matrix add up to one.

Figure 2.9: Therandomly initialized HMM for monosyllabic Dutch words after train-
ing. Thisisagraphical representation of the A-matrix of figure 2.8. The HMM after
training contains no backward links while before training links in any direction were
possible.

the states in order of decreasing probability (ignoring characters which had less than
5% chance of being produced in the states):

» $ L L 9 ©

s7: st

.SC

rlwn

:oaeiu

seanouril]j

kthpbvgdmz

ckrplnfgmdst

State s, has changed into avowel production state. Only the five vowelsa,ei,oand u
are produced by this state with aprobability larger than 5%. In Dutch they can be used

48 chapter 2

both as a vowel and as a consonant. In fact, y is the only other token that is produced
by s4 with a score that is larger than 10~8. The probability of producing aj, which is
used in Dutch writing as a suffix for the i to create a frequent diphthong, islargest in
the after-vowel state ss. The initial valuesin the A and B matrices of the HMM were
random so the HMM did agood job in discovering the difference between vowels and
consonants and discovering the special position of thej in Dutch.

The HMM assigned the following scores for sequencesin the data sets:

training data positivetest data negative test data
Maximum: 4.361*10~% 4.379*10% 1.183*10 %
Average: 7.472%10~% 8.32910~® 3.429%10°%¢
Median: 1.298*10~% 1.286*10~% 0.000% 10+
Minimum: 192710~ 7.910r10-% 0.000* 10+

The difference between the positive test data and the negativetest datais most obvious
in the difference between the medians. The average score of a data set is not a good
comparison value because a small number of highly probable sequences will have a
large influence on this average. When we consider the median value, the score of the
negative datais alot smaller than the score of the positive data. Therefore we can say
that the HMM recognized the difference between the negative data set and the positive
data set.

In individual casesit is more difficult to falsify data. For example, the sequence
pajn (score 1.971*10~%), which clearly is not a Dutch syllable, would be ranked
126th in the list of 300 test data. It receives a larger score than the perfect Dutch
syllable worp (score 1.868* 10~%).

By using our threshold definition we obtain athreshold value of 1.927*10~1%, the
minimum score that the HMM has assigned to an element of the training data. With
this threshold value the HMM accepts 298 words of the positive test data. It rejects
2 words: stoischt (2.49*101?) and tgech (7.910*10~2%). This number of rejected
words is acceptable. However, the HMM aso accepts 57 words of the negative test
data. Among these accepted words are words which are impossible in Dutch like jlaj
(6.744*10~ ") and ufhf (3.099* 10—*1). ThisHMM does not work as we would like it
to do.

3.3 Orthographic data with linguisticinitialization

In the third experiment the initial parameter values of the HMM were derived from
the syllable model defined in (Cairns and Feinstein 1982) (see section 2.4 of chapter
1). All state transitions and character productionswhich are possiblein the Cairns and
Feinstein model received a random value. The others, for example the probability of
moving from s; to 5, and the probability of producing a consonant in the vowel state,

Initial Experiments 49

0.00 1.00 0.00 0.00 0.00 0.00 0.00 [0.16 [0.00]
0.00 0.05 024 071 0.00 0.00 0.00 0.80 0.00
0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
A=]000 000 000 032 017 048 0.00 |TI=| 004 | Q= | 0.03
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.14 0.19 0.00 0.67
| 000 0.00 0.00 0.00 0.00 0.00 0.00 | | 0.00 | | 1.00 |

Figure 2.10: Parameter definition of the linguistically initialized HMM after training.
The training process has only changed the values of the non-zero entries in these ma-
trices. The zero entries in the matrices represent impossible links that were initialized
on zero. Thetraining process could not change these values.

Figure 2.11: Thelinguisticaly initialized HMM for monosyllabic Dutch words after
training. This is the graphical version of the A-matrix in figure 2.10. The training
process only changed the weights of the links present in this picture. The result of
removing specific links from the model in advance is that the HMM after training is
more simple than the onein figure 2.9.

were set to zero. It was impossible for the HMM to change these zero-vaues. Itstask
was to find out the best values for the non-zero HMM parameters.

Again the Baum Welch algorithm was applied until the scores of the training pat-
terns stayed within a 1% distance of the previous scores. This time only 15 training
rounds were necessary. The parameters of the HMM after training can be found in
figure 2.10. The characters which are most likely to be the output of the states are in
order of decreasing probability (ignoring characters which have a probability of less
than 5%):

e 5:S
e s kthpblvged
e 3irlw

e 3. eaoiu

50 chapter 2

e ssinrljm
e s stkpldnfgr
e 5 ts

Again, al five vowelsin Dutch (a,g,i,0,u) are assigned to state 3. Thiswas aready the
fact in theinitial HMM and training did not change this fact.
The HMM assigned the following scores for sequencesin the data sets:

training data positivetest data negativetest data
Maximum: 9.644*10~% 6.794* 10~ % 1.497%10~%
Average: 7.588*10-% 8.634*10% 3.653*10%
Median: 6.945* 10~ 7.654* 107 0.000* 10100
Minimum: 7.418*10~%® 6.781*10~13 0.000* 101

A comparison between positive test data and negativetest data leads to the same result
asin the previous experiment: the average scores show no difference while the median
scores show a clear difference between the two data sets. Comparing individual cases
remains a problem. The acceptance threshold valueis 7.4* 1013, With this threshold
the HMM rejects one word of the positive test data set (tsjech). However, the HMM
accepts 112 words of the negative test data among which words like lve (9.202* 10~%7)
and fbep (4.111*10~%"). ThisHMM accepts too many strings.

3.4 Discussion

Ideally it should be possible to choose some threshold score for an HMM and decide
that every sequence with a score abovethis threshold is a possible sequence in the lan-
guage while a sequence with a score below the threshold is not. In order to be ableto
do this correctly, all impossible words should receive alower score than the ‘ most im-
probable’ word in the language. However, we have not been able to find such a perfect
threshold in the previous experiments. The most improbable word of the positive test
data, tsjech, has received the score 6.781* 10~ 13 of the linguistically initialized HMM.
This score is lower than the scores of some words of the negative data set which are
impossible in Dutch, for example zrag (1.747*10~%), pesf (7.323*10~%) and jlaj
(5.496*10~°7%). Figure 2.12 shows a comparison between words in the positive test
data and words in the negative test data. The randomly generated impossible word
ddneis about as probable as the Dutch word snoodst, the impossible gvna is about as
probabl e as placht and there are more couples like that.

Therearetwo explanationsfor thisbehavior. Thefirstisthat HMMsin general will
assign alower scoreto longer wordsthan to shorter words. The Dutch word tsjech con-
tains six characters while the non-words mentioned only contain four. However, this
HMM feature can only be a part of the explanation. When we try finding impossible
six-character wordsin the negative test datawe find | etfdh (score 8.218* 10—, fobhlh

Initial Experiments 51

281 0.00000002702359 schrap yuz
282 0.00000002672019 knapst yuz
283 0.00000002419223 grootst yuz
284 0.00000002289886 zeeuws daxn
285 0.00000002171036 joodst daxn
286 0.00000001651132 fijnst tzoeh
287 0.00000001589515 schask tzoeh
288 0.00000001508380 blondst tzoeh
289 0.00000000943477 snoodst ddne
290 0.00000000889425 bruutst yjw
291 0.00000000858229 schold ywua
292 0.00000000758883 placht gvna
293 0.00000000730357 schoor — sewz
294 0.00000000710498 smacht sewz
295 0.00000000636563 speech uuuar
296 0.00000000050732 schoolst zgoyt
297 0.00000000003132 echtst odhnf
298 0.00000000002609 stoischt odhnf
299 0.00000000001088 knechts gnpu
300 0.00000000000068 tsech fobhlh

Figure 2.12: The 20 most improbable words (according to linguistically initialized
HMM) inthe positivetest datatogether with negativetest datathat isequally probable.
The scores assigned to negative strings are too high. In this respect the performance
of the HMM can be improved if it can recognize that certain characters pairs do not
occur in monosyllabic Dutch words: yu, xn, dd, yj, yw, gv, wz, zg, dn, gn and |h.

(1.03*10~*?) and edfgdg (6.5* 10~ 13). These are all impossible six-character wordsin
Dutch and only the third one receives a lower score than the valid six-character word
tgech.

Another explanation for the behavior of the HMM can be found when we look at
the most probable processing sequence of the Dutch word pijn (pain) by the linguisti-
caly initialized HMM. The HMM will startin s, (p), moveto s (i), movetoss (j) and
finishin s (). Now let’s keep this state sequence and replace the characterswhich are
produced by other characters. For example, we can replace thei produced in s4 by an
a. Theaismorelikely to be produced in 54 than thei (seethe state character schemain
section 3.3, on each row characters are ordered from most frequent to least frequent)
so we have obtained aword pajn which has a more probable main state sequence than
theword pijn. Unfortunately, pajn isimpossible in Dutch.

The problem hereis clear. In monosyllabic Dutch words a j can follow an i but
it cannot follow an a. However, the probability that the HMM will produceaj in ss
is independent of the character produced in s4. The HMM does not have memory of

52 chapter 2

previous parts of the sequence. Therefore it will still assign incorrect scores to some
sequences.

A straightforward solution to this problem is to change the tokens the HMMs
process from one character tokens to two or three character tokens. So we change
the HMMs from a unigram model (no context characters) to a bigram model (one
character context) or a trigram model (two character context). A test with a bigram
HMM resulted in the desired behavior: because no aj bigrams occur in the training
dataarandomly initialized HMM will reject pajn (score 0.0) after training. This data
format modification solvesthe problem of pajn but it might cause anew problem when
we are going to work with HMMs that start from someinitial phonotactic knowledge.
If we want to use bigrams or trigrams, we will have to find out how to initialize a
model that processes these structures. The initialization model we want to use, the
Cairns and Feinstein model (see section 2.4 of chapter 1), does not contain an explicit
context environment.

Another problem is that in HMMs a sequence can never be more probable than
its prefix (the sequence without the final character). HMMs compute the score of a
seguence consisting of a prefix plus one extra character by multiplying the score of the
prefix with the probability that the character followsthe prefix. Neither of these values
will be larger than one. Because of this way of computation longer sequences will
receive a smaller score than shorter sequences. We want to compute the probability
that a sequence is present in the vocabulary of alanguage. This probability does not
depend on the length of the sequence only. Therefore the scores the HMM compute
should be changed to sequence-length-independent scores.

After having examined the scores the bigram HMM had assigned to the training
data, we observed that the average scores of sequences of length n were about 10 times
as large as scores of sequences of length n+1. Therefore we have decided to multiply
all HMM scores with a factor 10%eauence length jn order to decrease the influence of
length on sequence score.

4 Experimentswith bigram HMMs

In this section we will describe four series of experiments that we have carried out
with bigram HMMs. We will start with a general description of the set-up of the
experiments. After that we will present the results of the four experiment series. The
series are divided in two groups: in one group we have used orthographic dataand in
the other group we have used phonetic data. In each group we have performed two
series of experiments: one with HMMs that were initialized randomly and one with
HMMs that we initialized by using the phonologica model of Cairns and Feinstein
that was described in chapter 1. Each experiment will be described in a separate
section.

Experiments with bigram HMMs 53

4.1 General bigram HMM experiment set-up

In order to create a bigram HMM, we modified the way the HMM interpreted strings.
The unigram HMM interprets one character as one token: splash=s-p-I-a-s-h. Our
bigram HMM divides strings into two-character tokens: splash=sp-pl-la-as-sh. By
using thissimpleinput interpretation, we were ableto use the sametheoretical learning
model asin the previous experiments.

The interpretation created a problem. We consider an HMM production of a bi-
gram as the production of the second character of the bigram in the context of thefirst.
This means that the production of a six-character word like splashx (x isthe word-end
character) contains six steps (the five bigrams mentioned above plus the bigram hx).
These six steps produce the characters plashx. The first character of the word will
never be produced because during word production thereis no bigram which contains
the first character at the second position.

The omission of the production of thefirst character of the words generated erratic
behavior from the HMMs. The one-character words in the training set received a
zero-score from the HMMs which caused them to collapse. We solved this problem
by expanding our data representation by adding a word-start character to all words.
The production of aword then involved the production of aword-start character/first
character bigram (for splash thisis As, A isthe word-start character) which meansthat
now the first character of the word will be produced.

Apart from changing the representation of the data, we made another change in
these bigram experiments. We observed that the random initialization of the HMM
parameters influences the HMM performance. Because of the initia values of the
model, the learning performance can differ. To minimize thisinfluence we performed
have five experiments with different initial valuesin each series. The average perfor-
mance of the five experiments has been used as the result of the experiment series.

In these experiments we have used the large data set described in section 2.2 of
chapter 1: 5577 words in orthographic representation or 5084 words in phonetic rep-
resentation as training data, a 600 words positive test data set and a negative test data
set containing 600 strings.

4.2 Orthographic datawith random initialization

The first series of five experiments involved training randomly initialized HMMs on
orthographic data. We have used the orthographic data described in section 2.2 of
chapter 1. atraining data set of 5577 monosyllabic Dutch words, a positive test data
set of 600 monosyllabic Dutch words that did not occur in the training data set and a
set of 600 negative test strings that did not occur in the previous two data sets. The
results of these experiments can be found in figure 2.13.

On averagethe HMM needed 77.8 rounds to become stable. The stability criterion
used was the same as in the earlier experiments. the HMM was considered stable
when after atraining round the eval uation scores of the wordsin the training sequence
remained within a 1% distance from the scores that were assigned to them before this

54 chapter 2

nbr. rounds threshold positive accepts negative rejects
1 108 3.599%10~ 13 591 564
2. 87 1.090v10* 594 535
3. 81 5.909*10~ %4 594 544
4. 48 1.311*10° B 594 523
5. 65 5637710 1 594 565
| avg. | 77.8+£20.3 | | 593.441.2(98.9%) | 546.2+16.4(91.0%) |

Figure 2.13: The results of five experiments with randomly initialized bigram HMMs
that processed orthographic data. After an average of 78 training rounds the HMMs
accepted on average 593 words of the positive test data set (98.9%) and rejected 546
strings of the negative test data set (91.0%). Nineteen negative strings were accepted
by all five HMMs and five positive words were rejected by al five HMMs.

round. The resulting models accepted on average 593.4 of the 600 positive test words
(98.9%) and rejected 546.2 of the 600 negative strings (91.0%). Six positivetest words
werergjected by all models: ij’s, 's, fjord, f's, schwung and t's. The models assigned
alow scoretoij’sbecauseit containsatrigram (ij’) that does not occur in the training
data. The other five words contain a bigram that was not present in the training data.
The HMM s set the probability of occurrence of this bigram to zero. Therefore the
scores of these words a so became zero.

Nineteen of the 600 negative strings were accepted by al five models. deess,
enc, horet, ieer, maung, metet, oarp, ooe, oui, ousc, sassk, sspt, teaq, tskip, tspt,
uai, uast, waese and woic. These strings are not acceptable as monosyllabic Dutch
words. Some of them consists of two syllables (horet and metet) and others do not
even contain a vowel (sspt and tspt). Most of these misclassifications of the models
can be explained by the small context the models have been using. For example, ieer
consists of three very common bigrams ie, ee and er and the models use this fact to
assign a high score to the word. However, the combination of these three bigramsin
a Dutch monosyllabic word is not possible. The models could have been prevented
from making this mistake if they had been using alarger context: the trigram iee does
not occur in the training data. The two-syllable strings in this set can be explained
by the occurrence of some accepted words from foreign languagesin the training data
like shaket and faket. Acceptance of the consonant words was caused by the presence
of the two consonant interjections pst and sst in the training data set.

The errorsfor the positive test set are reasonable but we are less satisfied with the
errorsthe HMMs makefor the negativetest data. The tendency of the model sto accept
too many unacceptable strings can be contributed to the small one character context
that they are using. Expanding the context of the models would mean using trigrams
instead of bigrams. However, then we would run into computational problems. The
trigram models will simply need more computational resources for training than we
presently have available. Therefore we will try to improve the performance of these

Experiments with bigram HMMs 55

(00 10 00 00 00 00 00] [1.0] 0.0
00 10 10 10 00 00 00 1.0 1.0
00 00 00 10 00 00 00 0.0 0.0
A=]00 00 00 1.0 1.0 1.0 00 |II=| 10 | Q= | 10
00 00 00 00 00 1.0 00 0.0 0.0
00 00 00 10 00 10 10 0.0 1.0
| 00 00 00 0.0 0.0 00 10 | | 0.0 | | 1.0 |

vowels 00 00 00 1.0 0.0 0.0 0.0
B = consonants 1.0 10 10 00 10 1.0 1.0
Yy 10 10 10 10 10 10 10 |

Figure 2.14: Initial configuration for bigram HMMs for orthographic data that start
learning from linguistic knowledge. The value 0.0 indicates an impossible link or
an impossible character output and the value 1.0 indicates possible links or character
output.

modelsin a different fashion. We will supply the HMMs with some initial linguistic
knowledge and thus attempt to put constraints on the models that will be produced by
training. Our hopeis that the constrained models will be more strict when evaluating
negative strings.

4.3 Orthographic datawith linguisticinitialization

In the second series of experiments we have used the bigram HMMs with an initial
configuration that was derived from the model from Cairnsand Feinstein. Intheinitial
configuration we ignored the first characters of bigrams and we treated the output of a
XY bigram as the output of a'Y unigram. Theinitial configuration contained two types
of values: value 0.0 and values larger than 0.0. The first value type indicated links
or bigram outputs which are impossible according to the phonological model from
Cairns and Feinstein. It was impossible for the HMM to change this value during
training. The other value type was used for parametersthat represented possible links
or possible bigram outputs. These parameters were initialized with arandom value.
An outline of theinitial HMM configuration can befound in figure 2.14 and figure
2.15. Thisinitial configuration was based on the Cairns and Feinstein model (see
section 2.4 of chapter 1). The origina version of the Cairns and Feinstein model is
unable to explain the structure of all strings in orthographic training data. An HMM
that would use this model as initialization model would assign zero-scores to part of
our training data. Thiswould makeit unfit asan orthographic model since stringswith
zero-scores should be rejected and we require that our models accept all training data.
We have made three extensions to the standard Cairns and Feinstein model in
order to make it usable asan initial orthographic model. First, theinitial configuration

56 chapter 2

ft/\fk/\q g
< Gf\/ﬁ Ne

premargin - margincore satellite satellite oda appendix

Figure 2.15: Initial bigram HMM for orthographic data. Thisis a graphical represen-
tation of the HMM parameters presented in figure 2.14. The visible featuresthat were
added to the origina Cairns and Feinstein model are the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), the outward link from state 2 (margin core)
and the backward link from state 6 (coda) to state 4 (peak). These links are necessary
to enable the model to handle consonant clusters (ch, vowel clusters (diphtongs) and
the non-vowel words in the training data set like b, ¢, pst etcetera.

for the A-matrix contains three extra links from a state to itself namely for state 2
(margin core), state 4 (peak) and state 6 (coda). These links are necessary because in
orthographic data some consonants (for example ch) and some diphtongs (for example
au) are represented by two tokens while the production of specific tokensis restricted
to specific states by the B-matrix, for example vowels can only be produced by state
4 (peak). When sounds are represented by a cluster of tokens it is necessary to use
a state that should produce such a cluster a number of times in succession. In order
to be able to do that the state should contain a link to itself. The link from state 7
(appendix) to itself is necessary because the appendix can contain more than one s
or t, for example: tam, tams and tamst in which the s's and t's should appear in the
appendix (thisis aready afeature of the standard Cairns and Feinstein model).

The second extension is the backward link: state 6 — state 4 = coda — peak.
The HMMs were not able to process the training data set without this backward link.
L eaving out the backward link would make the HMM s assign zero-scores to accepted
loan words as ace, creme and file. These words contain two isolated vowel groups.
However, we will enable only one state (peak) to produce vowels. To be able to
process words with two isolated vowel groups the HMMs will have to use this state
twice and therefore a backward link to state 4 (peak) is necessary. The danger of
having such alink in the HMMsi s that they could use it for assigning high scores to
multiple syllable words.

The third extension of the Cairns and Feinstein model in thisinitial model is the
added possibility to finish a string after having processed the margin core (state 2).
In the initial model this is represented by a link from state two to the hidden eight
state. Thislink becomesvisiblein the second element of 2-matrix in figure 2.14. The
link is necessary to enable the HMMs to process interjections like pst and sst and the
consonants of alphabet (b, ¢, d, etc.) that are aso present in our training data set as
words.

Experiments with bigram HMMs 57

nbr. rounds threshold positive accepts negative rejects
1. 43 3.313*10° P 595 509
2. 17 9.947*10~ 7 595 511
3. 63 3.337*10° P 595 508
4, 22 1.036*10—1° 595 513
5. 47 1.43910~ 1 595 514
| avg. [384+16.9 | | 595.0+0.0(99.2%) | 511.0+2.3(85.2%) |

Figure 2.16: The results of five experiments with linguisticaly initialized bigram
HMMs that processed orthographic data. After an average of 38 training rounds the
HMMss accepted 595 words of the positive test data set (99.2%) and rejected on aver-
age 511 strings of the negative test data set (85.2%). Eighty-two negative strings were
accepted by al five HMMs and five test words were rejected by all five HMMs.

The initial B-matrix contains three groups of tokens. The first group consists of
the vowels which can only be produced by state 4 (peak). The second group consists
of the consonants. These can be produced by any state except state 4 (peak). We have
regarded the single quote character (', among otherspresent ind'r, j'sand via's) asa
vowel. Finally there is the y which can be used both as a vowel and a consonant in
Dutch. This character can be produced by any state.

Like in the previous section we performed five experiments with different initial
parameter values. The results can be found in figure 2.16. The HMMs needed on
average only 38.4 rounds to become stable. Thus they trained faster than the HMMs
that were initialized randomly (t(4)=3.0, p<0.025, see section 2.5 of chapter 1). The
linguistic initialization procedure resulted in small increase of the positive test words
that were accepted: on average 595.0 compared with 593.4 for the randomly initialized
HMMs (t(4)=2.7, p<0.05). Contrary to our goal the HMMs with linguistic initializa-
tion rejected fewer incorrect strings from the negative test data set than the HMMs
that were initialized randomly: 511.0 compared with 546.2 (t(4)=4.3, p<0.01). We
have to conclude that the phonological model we used for initializing the HMMs is
not suitable for our orthographic data.

We have inspected one of the HMMs that resulted after training from a random
initialization. This model suggested that we should make three changes to our initial
model. First, we should allow vowel production in two statesinstead of one state. The
model suggested to use state 6 as an extra vowel state. This state would be allowed
to produce both consonants and vowels. The extra vowel state is necessary for being
able to process the foreign words with two vowel clusters. As a result of extending
the production capabilities of state 6 we can remove the backward link between state
6 and state 4. Thisis the second change we make to the model. Finaly, the trained
HMM processed the quote character as a consonant, not asavowel. We will makethis
change in the initial model as well. There were other differences between the trained

58 chapter 2

[00 1.0 00 00 00 0.0 0.0] (10] 0.0
00 10 10 10 00 00 00 10 10
0.0 00 00 1.0 00 00 00 0.0 0.0
A=|00 00 00 1.0 10 10 00 |I=| 10 | Q= 10
0.0 00 0.0 00 0.0 10 00 0.0 0.0
0.0 00 0.0 00 00 10 10 0.0 1.0

| 00 0.0 00 00 00 0.0 10 | | 00 | | 10 |

vowels 00 00 0.0 10 00 1.0 007
B = | consonants 1.0 1.0 1.0 0.0 10 1.0 1.0
Yy 10 10 10 10 10 10 1.0 |

Figure 2.17: Modified initial configuration for bigram HMMs for orthographic data
that start learning from linguistic knowledge. In order to mimic the behavior of the
trained models with random initialization, we have removed the backward link from
state 6 to state 4 and allowed state 6 to produce vowels. Furthermore, we have treated
the quote character * as a consonant instead of avowel.

randomly initialized model and our linguistic initial model but these three were the
most important ones. Theinitial model can be found in figure 2.17 and 2.18.

The HMMs trained with this initial configuration performed better with respect
to the negative strings than the previouslinguistically initialized HMMs (figure 2.19).
They rejected 567 of the 600 negative strings (94.5%) compared with on average 511.0
rejected strings by the previousHMM s (t(4)=49.1, p<0.005) Thetraining time needed
was about as long as the previous HMMs (52.2 rounds compared with 38.4 rounds,
t(4)=1.1 p>0.1) while they accepted fewer strings of the positivetest data (593.4 com-
pared with 595, 1(4)=6.5, p<0.005). If we compare these HMMs with the randomly
initialized HMMswe find out that they need about the same training time (52.2 rounds
compared with 77.8 rounds, t(4)=1.8, p>0.05), accept the same number of positivetest
words (593.4 compared with 593.4, t(4)=1.8, p>0.25) and reject more strings of the
negative test data set (567 compared with 546.2, t(4)=2.5, p<0.05).

We can conclude that for orthographic data the performance of the HMMs can
be improved by starting training from a good initial HMM configuration. Construct-
ing the initiadl HMM from a phonological model without making any data-specific
adjustments did not provide us with good results. The difference between a good
phonological model and a good orthographic model istoo large.

4.4 Phonetic datawith random initialization

The third series of five experiments involved training randomly initialized HMMs to
process phonetic data. We have used the phonetic data described in section 2.2: a

Experiments with bigram HMMs 59

5%@@ e eats

Figure 2.18: Modified initial bigram HMM for orthographic data. Thisis a graphical
representation of the HMM parameters presented in figure 2.17. The backward link
from state 6 to state 4 has been removed from the model. The other features that were
added to the original Cairns and Feinstein model, the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), and the outward link from state 2 (margin
core), remained in the model.

nbr. rounds threshold positive accepts negative rejects
1 55 2.841*10~ 1 593 567
2. 52 5.974*10 594 567
3. 21 6.092* 10~ 594 567
4, 82 277810 593 567
5. 51 2.847*10° 1 593 567
| avg. | 52.2+19.3 | | 593.4+0.5(98.9%) | 567+0.0 (94.5%) |

Figure 2.19: The results of five experiments with bigram HMMs that processed or-
thographic data and used the modified linguistic initialization. After an average of 52
training rounds the HMMs accepted 593 words of the positive test data set (98.9%)
and rejected 567 strings of the negative test data set (94.5%). 33 negative strings were
accepted by all five HMMs and 6 test words were rejected by all five HMMs.

training data set of 5084 monosyllabic Dutch words, a positive test data set of 600
monosyllabic Dutch words that did not occur in the training data set and a negative
test set of 600 strings. The results of these experiments can be found in figure 2.20.

These five HMMss performed equally well as the five randomly initialized HMMs
that were trained on the orthographic data. They needed on average 68.6 training
rounds to become stable (similar the 77.8 for orthographic data, t(4)=0.5, p>0.25)
after which they accepted on average 594.6 words (99.1%) of the positive test data
set (similar to the 593.4 for orthographic data, t(4)=1.7, p>0.05) and rejected 565.6
strings (94.3%) of the negative test data set (better than the 546.2 for orthographic
data, t(4)=2.4, p<0.05). Five words of the positive test data set were rejected by all
five HMMs: fjord [fjort], fuut [fyt], schwung [fwug], schmink [fmigk] and schminkt
[/migkt]. These words contain bigrams that are not present in the training data: [fj],
[fy], [ug] and [ig]. The HMMs assign the score 0 to these bigrams and therefore the
scores of these words aso become 0.

60 chapter 2

nbr. rounds threshold positive accepts negative rejects
1. 48 3.401*10~1° 595 566
2. 58 6.274*10~ 11 595 568
3. 131 2.151*10°1° 593 563
4, 41 4.240%10°1° 595 565
5. 65 442510710 595 566
| avg. | 68.6432.3 | | 594.6+0.8(99.1%) | 565.6+1.6 (94.3%) |

Figure 2.20: Theresults of five experiments with randomly initialized bigram HMMs
that processed phonetic data. After an average of 69 training rounds the HMMs ac-
cepted on average 595 words of the positive test data set (99.1%) and rejected 566
strings of the negative test data set (94.3%). Twenty-eight negative strings were
accepted by al five HMMs and five positive test words were rejected by al five
HMMs. Twenty-four of the universally accepted negative strings had an acceptable
phonetic representation. When we take this into account, the average performance of
the HMMs on the negative test data set becomes 98.3%.

Twenty-eight negative strings were accepted by all five HMMs:. astt [ast], brhat
[brat], cci [ki:], ckeds [sketg], cto [sto], deess[de:s], €/h [£]], €jss[g]jg], fovhst [fofdt],
hurwd [hoawt], kkraeb [kre:p], klolc [KIolK], kuktzt [kaektst], nalc [nalk], oarp [o:rp],
ousc [ausk], piuttd [pju:t], rogks [roks], sassk [sask], teaq [ti:K], terh [ter], tskip [tskip]
ttik [tik], ttra [tra], ttui [tAy], twosd [twost], udsb [odsp] and uzs [y:s]. The or-
thographic representations of these words are not acceptable as monosyllabic Dutch
words but 24 of the 28 of the phonetic representations are acceptable. The four strings
that do not have an acceptable phonetic representation are: hurwd [hoawt], klolc
[Klolk], tskip [tskip] and udsb [odsp]. The conversion of the orthographic represen-
tations to the phonetic representations has been done by a native Dutch speaker and
this might haveresulted in ‘ quasi-Dutch’ transcriptions. Aninspection of the negative
data set resulted in two more acceptable transcriptions: tzips [tslps] and ttsue [tsy:].
If we omit the 26 acceptabl e negative strings from the data, the model has rejected on
average 564.2° of 574 negative strings (98.3%) which is agood score.

4.5 Phonetic data with linguistic initialization

The results of the randomly initialized HMMs that processed phonetic data were ac-
ceptable. Still we are interested what the HMMs will do when they are provided with
basic initial phonotactic knowledge. In this experiment series we will apply linguis-

3When the strings tzips [tslps] and ttsue [tsy:] are removed from the data the average rejection scores
will decrease with 1.0 because all HMMs rejected ttsue [tsy:] and with another 0.4 because two HMMs
rejected tzips [tslps).

Experiments with bigram HMMs 61

[1.0 1.0 0.0 00 0.0 0.0 0.0] [1.0 0.0
0.0 00 1.0 1.0 00 0.0 00 1.0 1.0
0.0 00 0.0 1.0 00 0.0 00 0.0 0.0
A= 00 00 00 00 10 10 OO |II=|10|Q=| 10
0.0 00 00 00 0.0 10 0.0 0.0 0.0
0.0 00 00 00 0.0 00 10 0.0 1.0
| 0.0 0.0 0.0 0.0 00 0.0 1.0 | | 0.0 | | 1.0 |
_ vowels 00 0.0 00 10 0.0 0.0 00]
~ | consonants 10 10 10 00 10 10 10 |

Figure 2.21: Initia configuration for bigram HMMs for phonetic data that start from
basic phonotactic knowledge. The value 0.0 indicates an impossible link or an im-
possible character production and the value 1.0 indicates possible links or possible
character productions. The non-zero parameters were initialized with random values
before training.

tically initialized HMMs to phonotactic knowledge. The initialization model we will
use isthe model of Cairns and Feinstein we have introduced in section 2.4 of chapter
1. Again we had to adapt the standard Cairns and Feinstein model in order to enable it
to handle all words of thetraining dataset. This set contains two interjections (pst and
sst) and one abbreviation (s) that cannot be explained with the Cairns and Feinstein
model. In order to enable the models to handle these words we have added a link
from state 2 (margin core) to hidden eight state (see Q-matrix in figure 2.21 and figure
2.22). Thislink will enable the model to accept strings that do not contain a vowel.
Furthermore, we had to link state 1 (pre-margin) to itself in order to enable the models
to process the consonant clustersin pst and sst. All impossible links were removed
from the HMMs and they were prevented from restoring them. Theinitial model can
be found in figures 2.21 and 2.22.

Likein the experiments with the orthographic data the program was supplied with
information about the difference between vowels and consonants. Vowels were al-
lowed as the output of state 4 (peak) only and consonants were allowed as the output
of any other state (see B-matrix in figure 2.21). Thetask of the HMMswasto find out
the best values of the state transitionsin the model (A-matrix, II-matrix and Q2-matrix)
and discover what consonants are allowed in which state (B-matrix). The values of
impossible links (A-matrix, II-matrix and 2-matrix) and probabilities of impossible
productions of characters were initialized with zero. All other model parameters were
initialized with arandom value. We performed five experiments with this set-up. The
results can be found in figure 2.23.

The HMMs needed on average 28.2 rounds to become stable. Thus they need less
training rounds than the model s without linguisticinitialization (68.6 rounds, t(4)=2.3,

62 chapter 2

T -7 7

preemargin margin core satellite peak satellite coda appendix

Figure 2.22: Initial bigram HMM for phonetic data. Thisisagraphical representation
of the HMM parameters presented in figure 2.18. The two visible differences between
this model and the original phonological model of Cairns and Feinstein are the extra
link leaving state 2 (margin core) and the self-link at state 1 (pre-margin). These links
are necessary to enable the model to handle the non-vowel interjections pst and s<t,
the abbreviation s and the consonant clusters in these strings.

nbr. rounds threshold positive accepts negative rejects
1. 33 15751010 594 570
2. 48 16141010 595 570
3. 17 121310710 595 570
4. 10 3.562¢10~ 1! 595 569
5. 33 3.562x10~ 1 594 570
| avg. | 28.2+134 | | 594.6+0.5(99.1%) | 569.8+0.4 (95.0%)]

Figure 2.23: The results of five experiments with linguisticaly initialized bigram
HMMs that processed phonetic data. After an average of 28 training rounds the
HMMs accepted on average 595 words of the positive test data set (99.1%) and re-
jected 570 strings of the negative test data set (95.0%). When we removed strings
with an acceptable phonetic transcription from the negative test data the HMMs ob-
tained a rejection score of 99.1% on thistest set.

p<0.05). The models accepted on average 594.6 words of the positive test data and
thisisexactly asmany asthe HMMswith random initialization (594.6 words, t(4)=0.0,
p>0.25). They rejected more strings of the negative test data set (569.8) than the
models of the previous section (565.6 strings, t(4)=5.0, p<0.005).

Twenty-nine negative strings were accepted by all five HMMs and five test words
were rejected by all five HMMs. Thefive uniformly rejected test words were the same
as in the experiments with randomly initialized HMMs. Again the words received
the score zero because they contained bigrams that do not occur in the training data.
Of the 29 accepted strings from the negative test data set 24 were in the set of 26
reasonable phonetic transcriptions (see previous section). The other five universally
accepted strings were not acceptable: ephtsb [eptsp], hurwd [hoawt], klolc [KIolk],

Concluding remarks 63

sfhi [sfi:] and udsb [odsp]. When we remove the 26 reasonable transcriptions from
the data the HMM has rejected on average 568.6 of 574 negative strings (99.1%).
This is an improvement compared with the average score of 98.3% achieved in the
experiments with random initialization (t(4)=4.9, p<0.005).

5 Concluding remarks

It ispossible to use Hidden Markov Models (HMM) for building phonotactic models
fromalist of monosyllabic words. The resulting HMMs show recognition of language
specific features such as vowel-consonant distinction. Unigram HMMs perform well
in recognizing the difference between a set of positive test data and a set of negative
test data. However, recognizing the difference between individual casesis a problem:
the unigram HMM s often assign higher scores to incorrect data than to correct lan-
guage data. The main problems are that standard unigram HMMsdo not pay attention
to the context of a character and that they exaggerate the influence of sequence length
on sequence score. Providing the unigram HMMs with initial phonotactic knowledge
shortens the training phase but it does not increase their performance after training.

Bigram HMMs with score correction for sequence length perform better. They
misclassify few words and recognize a clear difference between positive test data and
negativetest data accepting on average 99.1% of a set of unseen correct wordsin pho-
netic representation (98.9% for orthographic data) while rejecting on average 98.3%
of aset of impossible negative phonetic test sequences (91.0% for orthographic data).
Providing initial linguistic knowledge to the HMMs caused a significant and large
increase of the training speed for the phonetic data but only small increasesin perfor-
mance. The number of training rounds needed went down from an average of 68.6 to
28.2 for phonetic data (t(4)=2.3, p<0.05, see section 2.5 of chapter 1). The acceptance
ratefor the positive phonetic test datawasthe samefor randomly and linguistically ini-
tialized HMMs (99.1%) but the rejection rate of the negative test data showed a small
increase from 98.3% for the randomly initialized HMMs to 99.1% for the linguisti-
caly initialized HMMs (1(4)=6.2, p<0.005). HMMswith initia linguistic knowledge
that processed orthographic data needed approximately the same number of training
rounds as HMMsthat wereinitialized randomly and performed worse. The phonol og-
ical model that we used for initializing the HMMs was not suitable for orthographic
data

We can examine two of the three research questions mentioned in chapter 1. The
phonetic data format seems to be better suitable for our problem. HMMs that pro-
cessed orthographic data accepted as many positive test words as those that processed
phonetic data but the latter rejected significantly more negative strings. Starting from
basi ¢ phonotactic knowledge enables the HMMs to produce better models but the dif-
ference was only noticeable in the rejection rates of the negative data. Both HMMs
that processed orthographic data as those that processed phonetic data accepted as
many positive test data with and without initial knowledge but the rejection rates for
negative data were significantly larger for the initialized HMMs.

64 chapter 2

The models that we have built in this chapter suffer from one of the problems that
were mentioned in (Fudge et al. 1998) namely the presence of |oan wordsin the data.
These words have complicated the models. However, it is not easy to removethe loan
words from the data set without making assumptions about the structure of the words.
Therefore, we have chosen to leave these words in the training and test data. Fudge
and Shockey have also recognized the problem of accepting incorrect strings when
no context information is used. We have discussed this problem in section 3.4 with
the example string pajn and solved the problem by using bigram HMMs instead of
unigram HMMs. Our orthographic bigram models reject two of the three problematic
words mentioned in (Fudge et al. 1998): smlasr and sdring. These strings should also
be impossible in Dutch. The third word, ssming, is accepted by the models because
the unusual onset ss occursin the interjection sst which is present in the training data.

Fudge and Shockey a so discuss the difference between accidental and systematic
gaps in language patterns. Our approach to this is to regard any string that is not
accepted by a model as a systematic gap and regard all strings that are accepted by a
model but that are not present in the language as an accidental gap. Thusthe difference
between accidental and systematic gaps has become a model-dependent difference.

The models derived in this chapter satisfy two of the five properties Mark Ellison
outlined in histhesis (Ellison 1992). They are cipher-independent (independent of the
symbols chosen for the phonemes) and language-independent (they make no initial
assumptions specific for a certain language), but their internal structure is neither ac-
cessible nor linguistically meaningful. The HMMs also fail to satisfy Ellison’s first
property (operation in isolation) because they receive preprocessed language input:
monosyllabic words. The removal of the monosyllabicity constraint we put on our
training datais an interesting topic for future work.

