
Chapter 2

Statistical Learning

In this chapter we will examine the application of a statistical learning technique to
the acquisition of phonotactic models. The learning technique which we will use is
called Hidden Markov Models. The chapter will start with an introduction to stan-
dard Markov models. After this we will examine the more elaborate Hidden Markov
Models (HMMs). The experiments we will perform with HMMs have been divided in
two groups. The first group of experiments consists of test experiments with a small
data set. With these experiments we will try to find out what restrictions we have to
impose on the HMMs and their training data in order to be able to make them acquire
phonotactic knowledge. These experiments will be discussed in the third section. The
fourth section will present the results of the HMMs that were applied to our main data
set. The final section of the chapter will give some concluding remarks.

1 Markov models

Before discussing the Hidden Markov Models, we will present the standard Markov
models. We start with a general description of these models. After this we will in-
troduce two basic algorithms which are used in connection with Markov models: the
forward procedure and the Viterbi algorithm.

1.1 General description of Markov models
A Markov model is a model consisting of states and weighted transitions. The task
of a Markov model is recognizing or producing sequences. An example of a Markov
model is shown in figure 2.1. It shows some popular target locations in a tourist walk
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Figure 2.1: The City Walk Markov Model: A Markov model for a tourist walk through
the city of Groningen. The states modeling locations are represented by filled circles
and the transitions by arrows connecting them. The weights indicate the probability
of moving from one state to another, e.g. when you are in the Museum the probability
of moving to the Martini Tower is 0.5.

through the city of Groningen: the Museum (MU), the City Hall (CH) and the Martini
Tower (MT). People start their walk from the Railway Station (RS) or from the Car
park (CP).

These five locations are represented as states in the model. The weights of the
links between the states indicate the probability that a visitor of a certain location will
go to another location. 60% of the people present in the Car park at time t will be in
the Museum at time t+1 (0.6 link). All people in the City Hall will walk to the Martini
Tower (1.0 link) and no people present in the Martini Tower will continue their walk
by visiting the Railway Station next (no link). The starting locations of the walk are
marked with links that start from outside the model. The probability that a walk starts
in the Car park is 20% (0.2 link) and the probability that it starts in the Railway Station
is 80% (0.8 link). A walk ends when the outward link from Car park (0.1) or Railway
Station (0.1) is used.

The parameters of a Markov model can be arranged in matrices. One matrix, the
A-matrix, contains the probabilities that concern the weights of internal links and an
element of this A-matrix indicates the probability that a transition between state i
and state j will be made. The -matrix contains the probabilities of starting in states
so indicates the probability that a Markov process starts in state i. Figure 2.2 shows
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0 00 0 90 0 00 0 00 0 00
0 40 0 00 0 10 0 50 0 00
0 00 0 60 0 00 0 30 0 00
0 00 0 20 0 10 0 00 0 70
0 00 0 00 0 00 1 00 0 00

0 80
0 00
0 20
0 00
0 00

Figure 2.2: Parameter definition of the City Walk Markov Model1. In the A-matrix a
horizontal row contains the probabilities of leaving state and moving to a state .
The order of the states is Railway Station, Museum, Car park, Martini Tower, City
Hall The -matrix contains the probabilities of starting in state . Examples: The
probability of moving from the Museum to the Railway Station is 0.40 (coordinate 2,1
in the A-matrix) and the probability of starting in the Car park is 0.20 (third number
in -matrix.

the matrix representation for the City Walk Markov Model.

1.2 The forward procedure
Now suppose that the people that are engaged in a walk change location once an hour.
What would be the probability that someone is in the Martini Tower after a walk
of two hours? If we want to compute this probability we have to find out all paths
from starting locations that reach the Martini Tower in two steps. Then we have to
compute the probabilities of these paths and compute their sum. This will give us the
probability we are looking for.

Inspection of figure 2.1 reveals that there are two paths possible from one of the
starting locations which reach the Martini Tower in two steps: Car park Museum

Martini Tower and Railway Station Museum Martini Tower. The probability
of starting in Car park is 0.2, moving from Car park to Museum has probability 0.6
and moving from Museum to Martini Tower 0.5. Therefore the probability of the first
path is 0 2 0 6 0 5 0 06. In a similar fashion we can compute the probability
of the second path: 0 8 0 9 0 5 0 36. The probability that someone is in the
Martini Tower after a walk of two hours is equal to the sum of these two probabilities:
0 06 0 36 0 42.

The general procedure that is used for computing the probability that a Markov
model will be in a state at a time is called the FORWARD PROCEDURE: . The
definition of this procedure is:

1In general the A-matrix and the -matrix satisfy the properties 1 and 1.
The first property is not satisfied by this A-matrix because we did not include the two model-leaving 0.1
arcs in the matrix. We will elaborate on this in section 3.1.
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0 (2.1)

1 (2.2)

Equation 2.1 defines that at time 0 the probability of being in a state s is equal to the
probability of starting in state s. We can compute the probability of being in a state s
at time point t+1 if we know the probability of being a state at time t. First we have to
multiply the probability of being in a state k with the weight of the link between state

and state s. After this we have to compute the sum of all these products (equation
2.2). Weights of non-existent links are defined to have value 0.

The forward procedure can be used for computing the probability that someone is
in the Martini Tower after a walk of two hours. The procedure value we are looking
for is 2 . We start with computing all 0 . With these values we compute all

1 values which in turn can be used for computing 2 .

0 0 8

0 0 2

All other 0 are equal to 0 because the probability of starting in these states ( )
is 0. In the following equations we will assume that the states are ordered, that is:

1=Railway Station (RS), 2=Museum (MU), 3=Car park (CP), 4=Martini Tower
(MT) and 5=City Hall (CH). Now the next step is:

1 0 0

1 0

0 0

0 8 0 9 0 2 0 6 0 84

1 0 0

1 0

0

0 2 0 3 0 06

1 0 0
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1 0

0 0

0 8 0 1 0 2 0 1 0 1

There are no links from starting locations to the states Railway Station, Car park and
City Hall. These locations cannot be reached in one step so their 1 value is equal
to 0. The Martini Tower state can be reached from the Car park state in one step and
the Museum state can be reached from both the Railway Station state and the Car park
state. They have an 1 value which is larger than 0. The state stands for
leaving the city.

With the values of the forward procedure for time 1 we can now compute 2 :

2 1

1

0 84 0 5 0 42

The Martini Tower can only be reached in two steps from one of the starting locations
if the first step takes the tourist to the Museum. The probability 2 is equal to
the one we have computed earlier.

By using the forward procedure we can speed up the computation of the probabil-
ity of being in a state s at time t. For example, suppose that we have to perform such a
computation for a ten-state Markov Model in which all states are connected with each
other and in which each state can be a starting state. Suppose that we want to know a
probability at time 10. If we compute this by summing the probabilities of all possible
paths to the state we will get into trouble. We can start in ten different states (time 0)
and at each new time point we can move to ten different states. This means that there
are 1010 different paths to a state at time 10. Since every path from time 0 to time 10
requires 10 multiplications, we will need 10*1010=1011. multiplications in order to
compute the probability in this fashion.

With the forward procedure we can simplify this computation. At each time step
we can compute each with 10 multiplications (see equation 2.2). There are 10

, so at each time step we will need 102 multiplications. For a probability at time
10 we will need 9 of those sets of multiplications and 10 additional multiplications for
the final time slice. In total we need 910 multiplications with the forward procedure
compared with the 1011 multiplications with the naive method.

1.3 The Viterbi algorithm
Now suppose that the city council wanted to put signs along a popular walk through
Groningen. The budget of the council is limited, and they only have enough money
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for a walk passing four locations. They want as many people as possible to see the
signs so they want to know what four-step path starting from a starting location is the
most likely one.

In total there are 48 4-step paths starting in one of the two initial positions. If
we compute the probability of each of these paths, we will find out that the path
Railway Station Museum Martini Tower City Hall Martini Tower is the
most probable 4-step path (probability 0.252). We saw in the previous section that
the number of paths can become quite large. In fact, the number of possible paths
increases exponentially as path length increases. For longer paths computing the most
likely one in this manner will take a lot of effort. Fortunately a good computational
method exists for computing the most probable path: the VITERBI ALGORITHM. Its
definition is:

0 (2.3)

1 (2.4)

The probability of the most likely path to a state at time 0 is equal to the probability of
starting in that state (equation 2.3). Probabilities at other time points can be computed
by using the probabilities of the previous time points (equation 2.4). Partial paths that
cannot contribute to the most likely path are pruned by the max function. The Viterbi
algorithm can be used to find out the most likely four-step path in the City Walk
Markov Model. In this example it will have to compute 5*5=25 probabilities instead
of the 48 probability computations that were necessary with the previous method. We
start with computing 0 :

0 0 8

0 0 2

The other 0 are equal to 0 and have been left out. We continue by computing
1 :

1 0

0

0

0 8 0 9 0 2 0 6 0 72

1 0

0

0 2 0 3 0 06
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Again, the other 1 are equal to zero and have been left out. We will not compute
because the probability of leaving the Markov model has no influence on

the probabilities at later time points; in this model people that leave the city are not
coming back. Here are the computations for 2

2 1

1

0 72 0 4 0 288

2 1

1

0 06 0 2 0 012

2 1

1

1

0 72 0 1 0 06 0 1 0 072

2 1

1

0 72 0 5 0 36

2 1

1

0 06 0 7 0 042

The computations of 3 and 4 can be performed in a similar fashion. We will
not list the complete computations here but confine with the results:

3 0 0048

3 0 2592

3 0 036

3 0 042

3 0 252

4 0 10368

4 0 0216

4 0 02592

4 0 252

4 0 0294
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Location Likes (L) Dislikes (D)
Railway Station 0.7 0.3
Museum 0.5 0.5
Car park 0.1 0.9
Martini Tower 0.9 0.1
City Hall 0.8 0.2

Figure 2.3: The probabilities of liking locations in the City Walk through Groningen.
Probabilities are only dependent on the currently visisted object. We assume that
previously visited locations do not influence the opinion of the tourists. Example:
the probability that someone that visited the Martini Tower disliked it is 0.1 and the
probability that the person liked it is 0.9.

As we can see 4 has the largest value (0.25200) so the path starting at the
Railway Station and ending at the Martini Tower is the most likely path containing 4
steps. This -value only gives us the final point of this path. If we want to know the
other locations present in the path, we will have to trace back the equations: 4
most probable ancestor was 3 , its most probable ancestor was 2 which
on its turn was preceded by 1 and 0 . So the most probable four-step path
is Railway Station Museum Martini Tower City Hall Martini Tower and
its probability is 0.252.

2 Hidden Markov Models

In the previous section we have examined Markov models. In this section we will
present an extended version of these models: Hidden Markov Models. We will give
a general description of these models and present the adapted versions of the forward
procedure and the Viterbi algorithm which are used in Hidden Markov Models. After
this we will describe how they can learn and how they can be used in practice.

2.1 General description of Hidden Markov Models
A researcher of the University of Groningen dedicates himself to finding out if people
that take part in a city walk through Groningen like the locations they visit. To find
the answer to this question he makes people fill in forms in which they are asked if
they like the locations they have visited. The results of these forms are summerized in
the table in figure 2.3.

The probability that someone likes the Railway Station (L) is 70% while the prob-
ability that the person does not like it (D) is 30%. All other probabilities are listed in
the table. Now every walk through Groningen can be represented by a sequence con-
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0 70 0 30
0 50 0 50
0 10 0 90
0 90 0 10
0 80 0 20

Figure 2.4: An Extension of the parameter definition of the City Walk Markov Model:
the B-matrix. In this matrix an entry represents the probability that in state
token can be produced. Example: the probability of producting L (like, 1) in the
Car park state ( 3) is 0.10 and the probability of producing D (dislike, 2) in the same
state is 0.90. The A-matrix and the -matrix remain unchanged.

taining the tourist’s opinion about the different locations. For example, if the previous
most-probable walk Railway Station Museum Martini Tower City Hall
Martini Tower was made by someone who likes the Martini Tower and the Museum
but does not like the Railway Station, the Car park and the City Hall, we would get
the sequence DLLDL.

The DL-sequences are an interesting by-product of the City Walk model. They are
not in a unique correspondence with state sequences. For example a walk consisting
of Car park Martini Tower Museum Railway Station Museum taken by
the same tourist can also be represented with the sequence DLLDL. Furthermore,
the same walk of a tourist that likes all locations can be represented by LLLLL. So
different walks can be represented with the same DL-sequences and the same walk
can generate different DL-sequences when made by different tourists.

It is possible to extend Markov Models to make them simulate this behavior. In
order to do that we define that in a state of the model different tokens can be produced.
The probabilities that tokens are produced will be stored in a new parameter matrix
of the model: the B-matrix (figure 2.4). In this matrix an entry represents the
probability that in state token can be produced. The other model parameters
incorporated in the A-matrix and the -matrix remain the same as in figure 2.2.

Now we have obtained a HIDDEN MARKOV MODEL (HMM). The model is called
hidden because from the token sequences generated by the model it is in general im-
possible to find out which states were passed through while generating the sequence.
In the specific example of the City Walk Markov Model different state sequences
could lead to the same DL-sequence. Therefore it was impossible to find out the state
sequence used if we only know a token sequence.

2.2 The extended forward procedure
We have presented the forward procedure and the Viterbi algorithm for Markov mod-
els by asking two questions. We will do the same for the related functions for HMMs.
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Our first Markov model question can be rephrased to: what is the probability of being
at the Martini Tower after a walk of two hours in which the tourist did not like the
starting location but in which he did like the second and the third location? In Hidden
Markov Model terms, what is the probability of being at state Martini Tower after two
steps while having produced token sequence DLL? We cannot use the forward proce-
dure for Markov Models for computing this probability because it does not take into
account the token production probabilities. A function that uses these probabilities is
the EXTENDED FORWARD PROCEDURE:

0

0

0 0 0 (2.5)

1 0 1 0 1 (2.6)

The probability of producing a token in a state at time 0 is equal to the probability
of starting in that state multiplied with the probability of producing the token in the
state (equation 2.5). The probability of producing a token 1 in state s at time 1
is equal to the sum of all values of the forward procedure for time and state
multiplied with the probability of moving from state to and the probability of
producing 1 in (equation 2.6). Note that the extended forward procedure uses the
probabilities of all tokens up to the current one. So the probability computed by this
function is not only dependent on the current token but also on all previous tokens in
the sequence.

We can use the extended forward procedure for answering the question we men-
tioned at the start of this section:

0

0 8 0 3 0 24

0

0 2 0 9 0 18

1 0

0 0 5 0 0 5

0 24 0 9 0 5 0 18 0 6 0 5 0 162

1 0

0 0 9

0 18 0 3 0 9 0 0486
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All 0 0 and 1 0 1 which are equal to 0 have been left out. Now we can
compute the probability we are looking for:

2 1

1 0 9

0 162 0 5 0 9 0 0729

The probability which is the result of this computation is smaller than the 2
which was computed for the Markov Models (0.42) because of the multiplications
with the token production probabilities ( 1).

2.3 The extended Viterbi algorithm
We can also rephrase our second Markov Model question for Hidden Markov Models:
what is the most probable two step walk in which the tourist liked all locations? Or
in Hidden Markov Models terms what is the most probable path corresponding with
the sequence LLL? We cannot use the Viterbi algorithm for Markov Models because
it does not include token production probabilities. We have to adapt this function to
obtain the EXTENDED VITERBI ALGORITHM:

0

0

0 0 0 (2.7)

1 0 1 0 1 (2.8)

The probability of the most likely path that ends in state and produces a sequence
containing one token 0 is equal to the probability of starting in multiplied with the
probability of producing 0 in (equation 2.7). The probability of the most likely
path ending in for a longer sequence is the maximal value that can be obtained by
multiplying the probability of the most likely path for the prefix of the sequence with
the probability of moving from the final state of the prefix to and the probability
of producing the current token in . The computation this extended Viterbi algorithm
performs is sequence-specific just as the computation of the extended forward proce-
dure.

This extended Viterbi algorithm can be used for finding out the most probable
state path corresponding with the sequence LLL. First we compute the values of the
-function for time 0:
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0

0 8 0 7 0 56

0

0 2 0 1 0 02

We can use values for computing the values of the functions for 1:

1 0

0 0 5 0 0 5

0 56 0 9 0 5 0 02 0 6 0 5 0 252

1 0

0 0 9

0 02 0 3 0 9 0 0054

The 0 and 1 that are equal to zero and have been left out. With these
results we can compute all 2 :

2 1

1 0 7

0 252 0 4 0 7 0 07056

2 1

1 0 5

0 0054 0 2 0 5 0 00054

2 1

1 0 1

1 0 1

0 252 0 1 0 1 0 0054 0 1 0 1 0 00252

2 1

1 0 9

0 252 0 5 0 9 0 1134

2 1

1 0 8

0 0054 0 7 0 8 0 003024



Hidden Markov Models 39

From these computation we can conclude that the most probable path that produces
ends in the Martini Tower. We can find out the previous locations by checking

what state was used in the maximal part of the 2 computation and this
turns out to be the Museum ( 1 ). The location before that can be found
by checking what state was used in the maximal part of the 1 computa-
tion. This turns out to be the Railway Station ( 0 ) so the most probable path
producing LLL is Railway Station Museum Martini Tower.

2.4 Learning in a Hidden Markov Model
Now suppose that in some distant country a group of engineers decides to rebuild the
main tourist attractions of Groningen. The engineers also want to enable the visitors
of New Groningen to experience the famous City Walk through Groningen. Unfortu-
nately, the engineers do not know what the main buildings look like and which build-
ings were connected with each other. The only feature about the City Walk they were
able to collect is a list of DL-sequences that were produced by participants in the City
Walk through Groningen. The engineers decide to set up some wooden barracks with
roads connecting them to each other and make tourists walk through this village. The
tourists all take with them a form in which they mention what locations they visited
and whether they liked the location. If the tourists thus produce a DL-sequence that
is in the list the engineers are trying to reproduce, the engineers will do nothing. If,
however, the DL-sequence is not in the list the engineers start improving or damaging
the buildings and the roads. This process continues until the tourists only produce
sequences that are in the list. The engineers have then succeeded in reproducing the
City Walk through Groningen and they have succeeded in reconstructing the underly-
ing Hidden Markov Model as far as the production of DL-sequences is concerned.

The problem of finding a Hidden Markov Model which produces a specific set of
token sequences is a common task. Our goal is to obtain a Hidden Markov Model
that produces sequences of characters. The model should assign high probabilities to
sequences that are words in some language and low probabilities to sequences that
cannot appear as words in the language. Note that we are not aiming at reproducing
the exact underlying model for the language. We will try to find a model that behaves
like the underlying language model. Like the engineers of New Groningen we only
know the token sequences produced by the model we are trying to rebuild. We will be
satisfied if we succeed in creating a model that is able to reproduce our data.

The problem is that there is no direct method for computing the parameters (the
matrices A, and B) of a Hidden Markov Model that is able to produce a specific set
of sequences with a large probability. Fortunately, there are methods for estimating
the values of the parameters of such a Hidden Markov Model. The most well-known
method for estimating the parameters of a Hidden Markov Model from a set of se-
quences is called the BAUM-WELCH ALGORITHM or the forward-backward algorithm
which has been described in (Rabiner et al. 1986) and (Van Alphen 1992) among oth-
ers. This algorithm consists of three steps:
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1. Initialize the Hidden Markov Model with random parameter values.

2. Make the Hidden Markov Model compute the probability of every sequence in
the set. During this computation we count how often transitions between states
are used and how often tokens are being produced in each state. We use the
resulting numbers for computing a new set of parameters.

3. We use the new parameter values for reinitializing the Hidden Markov Model.
The new Hidden Markov Model will assign a higher probability to the set of
training strings. Now we repeat step 2 and 3 until the behavior of the Hidden
Markov Model stabilizes.

There are different methods for deciding when a HMM has become stable. We will
discuss these in a later section. It is possible to prove that the Baum-Welch algorithm
terminates so we can be sure that the algorithm will always be able to produce a stable
HMM in a finite amount of time. The proof is complex and we will not list it here.
Interested readers are referred to section 5.4 of (Huang et al. 1990)

The most complex step of the Baum-Welch algorithm is step 2. We will formalize
this step by using the extended forward procedure (see equations 2.5 and 2.6) and
three other algorithms we will introduce in this section. Our goal is to find new values
for the HMM parameters , and . The definitions of these parameters are:

(2.9)

(2.10)

0 (2.11)

In equations 2.9 and 2.10 it is necessary to divide the numerator probabilities by the
probability of being in state to make sure that for each all add up to 1 and
all add up to 1. In order to be able to compute new values for the A-matrix, we
should be able to compute the probability that in a production of a sequence a specific
transition between two states will be made. We can view the production of a sequence
as consisting of three steps: the production of the current token, the production of the
prefix of this token and the production of the suffix of the token.2 We have an algo-
rithm that models the production of the prefix of a token: the forward procedure. The
first algorithm we will introduce here is the BACKWARD ALGORITHM: an algorithm
that models the production of the suffix of a token (e is the empty sequence and T is
the time at which the final element of the sequence is produced):

2In this chapter we do not use prefix and suffix as the linguistic terms. For us the prefix of a sequence
is the subsequence from the start to the current token (non-inclusive) and the suffix a sequence is the subse-
quence from the current token (non-inclusive) to the end of the sequence.
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1 1

1 (2.12)

1 1 2 1 (2.13)

The backward algorithm is the counterpart of the extended forward algorithm. It com-
putes the probability that a suffix of a sequence is produced while starting in a specific
state ( ). The probability that the empty string is produced in state at time is
defined to be equal to one (equation 2.12). If we know the probabilities of a sequence
which starts at time 1 in any of the states then we can compute the probability
of the same sequence preceded by some token at time and state by multiplying
the known value with the probability of moving from to and the probability of
producing 1 in and adding all these products together. Note that in this defini-
tion the production of a token is imagined as happening directly after the transition to
the state that produces the token. That is why equation 2.13 contains 1 and not

and why in 2.12 no token production has been taken into account.
We can combine the forward and the backward algorithm for computing the prob-

ability that the HMM assigns to a sequence:

0 0

0 0 1 (2.14)

The term 0 1 computes the probability of being in state
at time t while producing sequence 0 . Equation 2.14 computes the sum for

all which gives us the probability of producing sequence 0 while being in an
arbitrary state at time . This is equal to the probability of producing the sequence

0 . We can use 0 for computing the probability of being in state at
time t:

0 1

0
(2.15)

We need to divide 0 1 by the probability of producing
sequence 0 in order to make sure that for each the probabilities sum up
to 1. With this and the equations 2.10 and 2.11 we are now able to compute
new values for and :
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Figure 2.5: The computation of , the probability of being in state at time t
while producing the sequence 0 . Compute the probability that the prefix of the
sequence ends in ( 0 ), multiply it with the probability that the suffix of
the sequence starts in ( 1 ) and divide the result by the probability of
the sequence ( 0 ).

0

0 (2.16)

(2.17)

The numerator of equation 2.17 computes the sum of all for which
holds. The summations over t in equations 2.17 are necessary to take into account
all ( is independent of time). Apart from abling us to compute these two
HMM model parameters, can also be used for computing the denominator for
equation 2.9. Now we have to develop a function for computing the numerator of that
equation. We start by expanding equation 2.14:

0 0 1

0 1 2 1

0 1 1 2

(2.18)

The first line is equal to equation 2.14 and in the second line we have applied the
definition of 1 (equation 2.13). By reordering the elements of that line
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Figure 2.6: The computation of 1 , the probability of making a transition
from state to : Compute the probability that the prefix of the sequence ends in
( 0 ), multiply it with the HMM transition probability , the HMM to-
ken production probability 1 and the probability that the suffix of the sequence
starts in ( 1 2 ) and divide the result by the probability of the se-
quence ( 0 ).

( 0 is independent of ) we have derived the equation at the third line. We
have expanded the -term in order to get a term within the sums in which both the
computation of the probability of making the transition from to ( ) and the
production of token 1 ( 1) are visible. We can use the final part of equation
2.18 for computing the probability of making a transition from one state to another
(see also figure 2.6):

1

1

1
0 1 1 2

0

(2.19)

Now we need to divide 0 1 1 2 by the
probability of producing sequence 0 in order to make sure that for every the

1 probabilities sum up to 1. With this 1 function we are now
able to compute the parameters of the HMM:

1

1
(2.20)

Again the summations over t are necessary to take into account all values of the func-
tions for different t ( is independent of time). Now we have obtained formulas
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for computing new values for HMM parameters. Our training process will start with
random values for the HMM parameters , and . We make the HMM
process the training data and by using the equations 2.16, 2.17 and 2.20 we will be able
to obtain better values for the HMM parameters. We continue applying this process
until the probabilities that the HMM assigns to the training data become stable. At
that point we hope to have obtained an HMM which is a good model for the training
data.

2.5 Using Hidden Markov Models in practice
In this section we have introduced the mathematical background of Hidden Markov
Models (HMMs). In the next two sections we will apply HMMs on training data
that consists of monosyllabic Dutch words. Instead of DL-sequences the HMMs will
process arbitrary sequences of characters. The HMMs will assign scores to these
sequences. This scores will be equal to:

0 0

0 (2.21)

This is the sum for all of the extended forward procedure applied at the complete
string of which the production ended in state . This equation was derived from
equation 2.14. is equal to 1 for all (equation 2.12). The HMM will be
trained by presenting the training data to it and applying the Baum-Welch algorithm
until the HMM becomes stable. Here we have defined a stable HMM as an HMM
that assigns scores to training strings that do not differ more than 1% of the scores
assigned by the HMM before the final training round. In each training round the
complete training data set will be processed.

When the HMM has become stable we will test it by applying it to the positive
and the negative test data sets that we have described in chapter 1. The HMM should
accept as many strings from the positive test data as possible and reject as many neg-
ative data as possible. We need to define a threshold score for deciding if a string is
acceptable or of it is not. If a string receives a score that is higher than the threshold
score it will be accepted and if it is lower than this threshold the string will be rejected.

The problem is that different HMMs will assign different scores to strings. There-
fore it is impossible to determine a universal threshold value. Each HMM will require
its own threshold value. Since we want all strings in the training data set to be ac-
cepted we will define the THRESHOLD SCORE as the smallest score that is assigned to
an element of the training data set.
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3 Initial Experiments

We have performed three initial experiments to find out how we need to configure
the Hidden Markov Models (HMMs) in order to enable them to learn the phono-
tactic structure of monosyllabic Dutch words. In these experiments we have used a
small data set: 3507 monosyllabic Dutch words which were extracted from the Dutch
spelling guide (Spellingscommissie 1954). The HMMs were trained with 3207 words;
300 words were used as positive test data. The test data also contained an additional
set of 300 randomly generated words that were constructed by taking into account the
character frequencies and word length frequencies of the strings in the training data
and the positive test data. No effort was taken to remove strings from the random data
set that occurred in the training data or the positive test data. The data contained char-
acter representations of words rather than phonetic transcriptions. Three experiments
have been performed with HMMs which contained seven states:

1. An experiment with standard data sets and random initial HMM parameter val-
ues.

2. An experiment with modified data sets and random initial HMM parameter val-
ues.

3. An experiment with modified data sets and initial HMM parameter values which
had been derived from a phonological model.

We have chosen a seven-state HMM rather than an HMM with any other number of
states because the linguistic model we have used for initializing the HMMs (the Cairns
and Feinstein model, see section 2.4 of chapter 1) also contains 7 states. Using HMMs
with the same number of states made the initialization process easier.

The next sections describe the results of these experiments.

3.1 A test experiment
In our first experiment we initialized the A, B and matrices with random values.
Then we used the Baum Welch algorithm to train the HMM. We stopped training when
the scores assigned by the HMM to the words in the training set did not change more
than 1% compared with the values after the previous training round. The parameters
of the HMM after training can be found in figure 2.7.

In HMMs the probabilities of the outgoing transitions of each state have to sum up
to 1. In this HMM this is not the fact. The reason for this is that this HMM does not
handle word boundaries explicitly. For example, the outgoing transitions probabilities
of the first state (top row A-matrix) sum up to 98%. This means that the probability
of leaving the model after visiting state 1 is 2%.

Because of this implicit handling of the word boundaries the scores assigned to
words were worthless. The HMM will never assign prefixes of a sequence a score that
is smaller than the sequence itself because the score of is computed
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0 04 0 94 0 00 0 00 0 00 0 00 0 00
0 00 0 51 0 31 0 00 0 06 0 02 0 00
0 00 0 00 0 00 0 15 0 25 0 00 0 00
0 00 0 00 0 00 0 00 0 20 0 00 0 00
0 00 0 00 0 00 0 00 0 00 0 53 0 00
0 37 0 00 0 00 0 00 0 00 0 00 0 00
0 00 0 00 0 00 0 00 0 00 0 00 0 00

0 93
0 01
0 00
0 00
0 06
0 00
0 00

Figure 2.7: Parameter definition of the test HMM after training. The B Matrix is
omitted. Apart from the backward connection from state 6 to state 1 (0.37) the HMM
contains forward links only. The probabilities in the rows of the A-matrix do not add
up to 1 because word boundaries were handled implicitly.

by multiplying the score of with the probability of (a number with 1 as
maximal value). For example, rot will receive a larger score than rots and rots itself
will receive a larger score than rotst. After merging the test results with the random
results we discovered that, apart from two exceptions, all words of length n+1 received
a smaller score than words of length n. This means that the HMM will consider
impossible four-character strings more probable than valid five-character words. This
clearly is wrong. Of course, in natural language it is not always the fact that a complex
suffix is less improbable than a simple suffix. For example, in Dutch a syllable ending
in the character c is more improbable than a syllable ending in ch. Some way has to
be found to model this fact.

To handle this problem we have added an end-of-word character to all words in
our training and test data. This extra character can only be the output of an eighth state
in the HMM. After processing a word the HMMs have to be in this last state. This
state is a so-called null state ((Van Alphen 1992)): no transitions are possible from
this state. The eighth state has not been made visible in the pictures in this chapter.
All transition probabilities from the other states to the last state have been put in a
special vector (analogous to the vector, compare figure 2.7 with 2.8).

3.2 Orthographic data with random initialization
Our next experiment was similar to the previous apart from the fact that we have used
modified data sets (with end-of-word characters). Again the A, B, and matrix of
a seven-state HMM were initialized with random values. The Baum Welch algorithm
(see section 2.4) was applied repeatedly until all training pattern scores stayed within
a 1% distance of the previous scores which required 51 training rounds. The result
of this was an HMM (see figure 2.9) without backward transitions (see figure 2.9, the
initial HMM contained some backward transitions). The character output of the states
was interesting. Here is a list of characters which are most likely to be the output of
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0 19 0 64 0 16 0 01 0 00 0 00 0 00
0 00 0 00 0 33 0 67 0 00 0 00 0 00
0 00 0 00 0 00 1 00 0 00 0 00 0 00
0 00 0 00 0 00 0 00 0 68 0 25 0 06
0 00 0 00 0 00 0 00 0 01 0 81 0 13
0 00 0 00 0 00 0 00 0 00 0 00 0 27
0 00 0 00 0 00 0 00 0 00 0 00 0 28

0 17
0 68
0 12
0 03
0 00
0 00
0 00

0 00
0 00
0 00
0 01
0 05
0 73
0 72

Figure 2.8: Parameter definition of the randomly initialized HMM after training. The
HMM does not contain backward links. The elements of each row in the A-matrix
together with the corresponding element in the -matrix add up to one.

0.81
S S S S S S S1 2 3 4 5 6 7

0.64

0.19
0.67

0.16

0.33

0.06

0.68

0.25

0.01

0.01

0.27

0.13
0.28

1.00

Figure 2.9: The randomly initialized HMM for monosyllabic Dutch words after train-
ing. This is a graphical representation of the -matrix of figure 2.8. The HMM after
training contains no backward links while before training links in any direction were
possible.

the states in order of decreasing probability (ignoring characters which had less than
5% chance of being produced in the states):

s1: s c

s2: k t h p b v g d m z

s3: r l w n

s4: o a e i u

s5: e a n o u r i l j

s6: k r p l n f g m d s t

s7: s t

State s4 has changed into a vowel production state. Only the five vowels a,e,i,o and u
are produced by this state with a probability larger than 5%. In Dutch the y can be used



48 chapter 2

both as a vowel and as a consonant. In fact, y is the only other token that is produced
by s4 with a score that is larger than 10 8. The probability of producing a j, which is
used in Dutch writing as a suffix for the i to create a frequent diphthong, is largest in
the after-vowel state s5. The initial values in the A and B matrices of the HMM were
random so the HMM did a good job in discovering the difference between vowels and
consonants and discovering the special position of the j in Dutch.

The HMM assigned the following scores for sequences in the data sets:

training data positive test data negative test data
Maximum: 4.361*10 04 4.379*10 04 1.183*10 04

Average: 7.472*10 05 8.329*10 05 3.429*10 06

Median: 1.298*10 05 1.286*10 05 0.000*10 00

Minimum: 1.927*10 11 7.910*10 21 0.000*10 00

The difference between the positive test data and the negative test data is most obvious
in the difference between the medians. The average score of a data set is not a good
comparison value because a small number of highly probable sequences will have a
large influence on this average. When we consider the median value, the score of the
negative data is a lot smaller than the score of the positive data. Therefore we can say
that the HMM recognized the difference between the negative data set and the positive
data set.

In individual cases it is more difficult to falsify data. For example, the sequence
pajn (score 1.971*10 05), which clearly is not a Dutch syllable, would be ranked
126th in the list of 300 test data. It receives a larger score than the perfect Dutch
syllable worp (score 1.868*10 05).

By using our threshold definition we obtain a threshold value of 1.927*10 11, the
minimum score that the HMM has assigned to an element of the training data. With
this threshold value the HMM accepts 298 words of the positive test data. It rejects
2 words: stoischt (2.49*10 12) and tsjech (7.910*10 21). This number of rejected
words is acceptable. However, the HMM also accepts 57 words of the negative test
data. Among these accepted words are words which are impossible in Dutch like jlaj
(6.744*10 7) and ufhf (3.099*10 11). This HMM does not work as we would like it
to do.

3.3 Orthographic data with linguistic initialization
In the third experiment the initial parameter values of the HMM were derived from
the syllable model defined in (Cairns and Feinstein 1982) (see section 2.4 of chapter
1). All state transitions and character productions which are possible in the Cairns and
Feinstein model received a random value. The others, for example the probability of
moving from s7 to s1 and the probability of producing a consonant in the vowel state,
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0 00 1 00 0 00 0 00 0 00 0 00 0 00
0 00 0 05 0 24 0 71 0 00 0 00 0 00
0 00 0 00 0 00 1 00 0 00 0 00 0 00
0 00 0 00 0 00 0 32 0 17 0 48 0 00
0 00 0 00 0 00 0 00 0 00 1 00 0 00
0 00 0 00 0 00 0 00 0 00 0 14 0 19
0 00 0 00 0 00 0 00 0 00 0 00 0 00

0 16
0 80
0 00
0 04
0 00
0 00
0 00

0 00
0 00
0 00
0 03
0 00
0 67
1 00

Figure 2.10: Parameter definition of the linguistically initialized HMM after training.
The training process has only changed the values of the non-zero entries in these ma-
trices. The zero entries in the matrices represent impossible links that were initialized
on zero. The training process could not change these values.

0.48

S S S S S S S1 2 3 4 5 6 7
1.00

0.05

0.24

0.71
0.32 0.14

0.190.17 1.001.00

Figure 2.11: The linguistically initialized HMM for monosyllabic Dutch words after
training. This is the graphical version of the A-matrix in figure 2.10. The training
process only changed the weights of the links present in this picture. The result of
removing specific links from the model in advance is that the HMM after training is
more simple than the one in figure 2.9.

were set to zero. It was impossible for the HMM to change these zero-values. Its task
was to find out the best values for the non-zero HMM parameters.

Again the Baum Welch algorithm was applied until the scores of the training pat-
terns stayed within a 1% distance of the previous scores. This time only 15 training
rounds were necessary. The parameters of the HMM after training can be found in
figure 2.10. The characters which are most likely to be the output of the states are in
order of decreasing probability (ignoring characters which have a probability of less
than 5%):

s1: s

s2: k t h p b l v g c d

s3: r l w

s4: e a o i u
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s5: n r l j m

s6: s t k p l d n f g r

s7: t s

Again, all five vowels in Dutch (a,e,i,o,u) are assigned to state 3. This was already the
fact in the initial HMM and training did not change this fact.

The HMM assigned the following scores for sequences in the data sets:

training data positive test data negative test data
Maximum: 9.644*10 04 6.794*10 04 1.497*10 04

Average: 7.588*10 05 8.634*10 05 3.653*10 06

Median: 6.945*10 06 7.654*10 06 0.000*10 00

Minimum: 7.418*10 13 6.781*10 13 0.000*10 00

A comparison between positive test data and negative test data leads to the same result
as in the previous experiment: the average scores show no difference while the median
scores show a clear difference between the two data sets. Comparing individual cases
remains a problem. The acceptance threshold value is 7.4*10 13. With this threshold
the HMM rejects one word of the positive test data set ( ). However, the HMM
accepts 112 words of the negative test data among which words like lve (9.202*10 07)
and fbep (4.111*10 07). This HMM accepts too many strings.

3.4 Discussion
Ideally it should be possible to choose some threshold score for an HMM and decide
that every sequence with a score above this threshold is a possible sequence in the lan-
guage while a sequence with a score below the threshold is not. In order to be able to
do this correctly, all impossible words should receive a lower score than the ‘most im-
probable’ word in the language. However, we have not been able to find such a perfect
threshold in the previous experiments. The most improbable word of the positive test
data, tsjech, has received the score 6.781*10 13 of the linguistically initialized HMM.
This score is lower than the scores of some words of the negative data set which are
impossible in Dutch, for example zrag (1.747*10 05), pesf (7.323*10 06) and jlaj
(5.496*10 07). Figure 2.12 shows a comparison between words in the positive test
data and words in the negative test data. The randomly generated impossible word
ddne is about as probable as the Dutch word snoodst, the impossible gvna is about as
probable as placht and there are more couples like that.

There are two explanations for this behavior. The first is that HMMs in general will
assign a lower score to longer words than to shorter words. The Dutch word tsjech con-
tains six characters while the non-words mentioned only contain four. However, this
HMM feature can only be a part of the explanation. When we try finding impossible
six-character words in the negative test data we find letfdh (score 8.218*10 11), fobhlh
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281 0.00000002702359 schrap yuz
282 0.00000002672019 knapst yuz
283 0.00000002419223 grootst yuz
284 0.00000002289886 zeeuws daxn
285 0.00000002171036 joodst daxn
286 0.00000001651132 fijnst tzoeh
287 0.00000001589515 schaak tzoeh
288 0.00000001508380 blondst tzoeh
289 0.00000000943477 snoodst ddne
290 0.00000000889425 bruutst yjw
291 0.00000000858229 schold ywua
292 0.00000000758883 placht gvna
293 0.00000000730357 schoor sewz
294 0.00000000710498 smacht sewz
295 0.00000000636563 speech uuuar
296 0.00000000050732 schoolst zgoyt
297 0.00000000003132 echtst odhnf
298 0.00000000002609 stoischt odhnf
299 0.00000000001088 knechts qnpu
300 0.00000000000068 tsjech fobhlh

Figure 2.12: The 20 most improbable words (according to linguistically initialized
HMM) in the positive test data together with negative test data that is equally probable.
The scores assigned to negative strings are too high. In this respect the performance
of the HMM can be improved if it can recognize that certain characters pairs do not
occur in monosyllabic Dutch words: yu, xn, dd, yj, yw, gv, wz, zg, dn, qn and lh.

(1.03*10 12) and edfgdg (6.5*10 13). These are all impossible six-character words in
Dutch and only the third one receives a lower score than the valid six-character word
tsjech.

Another explanation for the behavior of the HMM can be found when we look at
the most probable processing sequence of the Dutch word pijn (pain) by the linguisti-
cally initialized HMM. The HMM will start in s2 (p), move to s4 (i), move to s5 (j) and
finish in s6 (n). Now let’s keep this state sequence and replace the characters which are
produced by other characters. For example, we can replace the i produced in s4 by an
a. The a is more likely to be produced in s4 than the i (see the state character schema in
section 3.3, on each row characters are ordered from most frequent to least frequent)
so we have obtained a word pajn which has a more probable main state sequence than
the word pijn. Unfortunately, pajn is impossible in Dutch.

The problem here is clear. In monosyllabic Dutch words a j can follow an i but
it cannot follow an a. However, the probability that the HMM will produce a j in s5

is independent of the character produced in s4. The HMM does not have memory of
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previous parts of the sequence. Therefore it will still assign incorrect scores to some
sequences.

A straightforward solution to this problem is to change the tokens the HMMs
process from one character tokens to two or three character tokens. So we change
the HMMs from a unigram model (no context characters) to a bigram model (one
character context) or a trigram model (two character context). A test with a bigram
HMM resulted in the desired behavior: because no aj bigrams occur in the training
data a randomly initialized HMM will reject pajn (score 0.0) after training. This data
format modification solves the problem of pajn but it might cause a new problem when
we are going to work with HMMs that start from some initial phonotactic knowledge.
If we want to use bigrams or trigrams, we will have to find out how to initialize a
model that processes these structures. The initialization model we want to use, the
Cairns and Feinstein model (see section 2.4 of chapter 1), does not contain an explicit
context environment.

Another problem is that in HMMs a sequence can never be more probable than
its prefix (the sequence without the final character). HMMs compute the score of a
sequence consisting of a prefix plus one extra character by multiplying the score of the
prefix with the probability that the character follows the prefix. Neither of these values
will be larger than one. Because of this way of computation longer sequences will
receive a smaller score than shorter sequences. We want to compute the probability
that a sequence is present in the vocabulary of a language. This probability does not
depend on the length of the sequence only. Therefore the scores the HMM compute
should be changed to sequence-length-independent scores.

After having examined the scores the bigram HMM had assigned to the training
data, we observed that the average scores of sequences of length n were about 10 times
as large as scores of sequences of length n+1. Therefore we have decided to multiply
all HMM scores with a factor 10 in order to decrease the influence of
length on sequence score.

4 Experiments with bigram HMMs

In this section we will describe four series of experiments that we have carried out
with bigram HMMs. We will start with a general description of the set-up of the
experiments. After that we will present the results of the four experiment series. The
series are divided in two groups: in one group we have used orthographic data and in
the other group we have used phonetic data. In each group we have performed two
series of experiments: one with HMMs that were initialized randomly and one with
HMMs that we initialized by using the phonological model of Cairns and Feinstein
that was described in chapter 1. Each experiment will be described in a separate
section.
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4.1 General bigram HMM experiment set-up
In order to create a bigram HMM, we modified the way the HMM interpreted strings.
The unigram HMM interprets one character as one token: splash=s-p-l-a-s-h. Our
bigram HMM divides strings into two-character tokens: splash=sp-pl-la-as-sh. By
using this simple input interpretation, we were able to use the same theoretical learning
model as in the previous experiments.

The interpretation created a problem. We consider an HMM production of a bi-
gram as the production of the second character of the bigram in the context of the first.
This means that the production of a six-character word like splash ( is the word-end
character) contains six steps (the five bigrams mentioned above plus the bigram h ).
These six steps produce the characters plash . The first character of the word will
never be produced because during word production there is no bigram which contains
the first character at the second position.

The omission of the production of the first character of the words generated erratic
behavior from the HMMs. The one-character words in the training set received a
zero-score from the HMMs which caused them to collapse. We solved this problem
by expanding our data representation by adding a word-start character to all words.
The production of a word then involved the production of a word-start character/first
character bigram (for splash this is s, is the word-start character) which means that
now the first character of the word will be produced.

Apart from changing the representation of the data, we made another change in
these bigram experiments. We observed that the random initialization of the HMM
parameters influences the HMM performance. Because of the initial values of the
model, the learning performance can differ. To minimize this influence we performed
have five experiments with different initial values in each series. The average perfor-
mance of the five experiments has been used as the result of the experiment series.

In these experiments we have used the large data set described in section 2.2 of
chapter 1: 5577 words in orthographic representation or 5084 words in phonetic rep-
resentation as training data, a 600 words positive test data set and a negative test data
set containing 600 strings.

4.2 Orthographic data with random initialization
The first series of five experiments involved training randomly initialized HMMs on
orthographic data. We have used the orthographic data described in section 2.2 of
chapter 1: a training data set of 5577 monosyllabic Dutch words, a positive test data
set of 600 monosyllabic Dutch words that did not occur in the training data set and a
set of 600 negative test strings that did not occur in the previous two data sets. The
results of these experiments can be found in figure 2.13.

On average the HMM needed 77.8 rounds to become stable. The stability criterion
used was the same as in the earlier experiments: the HMM was considered stable
when after a training round the evaluation scores of the words in the training sequence
remained within a 1% distance from the scores that were assigned to them before this
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nbr. rounds threshold positive accepts negative rejects
1. 108 3.599*10 13 591 564
2. 87 1.090*10 12 594 535
3. 81 5.909*10 14 594 544
4. 48 1.311*10 13 594 523
5. 65 5.637*10 13 594 565

avg. 77.8 20.3 593.4 1.2 (98.9%) 546.2 16.4 (91.0%)

Figure 2.13: The results of five experiments with randomly initialized bigram HMMs
that processed orthographic data. After an average of 78 training rounds the HMMs
accepted on average 593 words of the positive test data set (98.9%) and rejected 546
strings of the negative test data set (91.0%). Nineteen negative strings were accepted
by all five HMMs and five positive words were rejected by all five HMMs.

round. The resulting models accepted on average 593.4 of the 600 positive test words
(98.9%) and rejected 546.2 of the 600 negative strings (91.0%). Six positive test words
were rejected by all models: ij’s, q’s, fjord, f ’s, schwung and t’s. The models assigned
a low score to ij’s because it contains a trigram (ij’) that does not occur in the training
data. The other five words contain a bigram that was not present in the training data.
The HMMs set the probability of occurrence of this bigram to zero. Therefore the
scores of these words also became zero.

Nineteen of the 600 negative strings were accepted by all five models: deess,
enc, horet, ieer, maung, metet, oarp, ooe, oui, ousc, sassk, sspt, teaq, tskip, tspt,
uai, uast, waese and woic. These strings are not acceptable as monosyllabic Dutch
words. Some of them consists of two syllables (horet and metet) and others do not
even contain a vowel (sspt and tspt). Most of these misclassifications of the models
can be explained by the small context the models have been using. For example, ieer
consists of three very common bigrams ie, ee and er and the models use this fact to
assign a high score to the word. However, the combination of these three bigrams in
a Dutch monosyllabic word is not possible. The models could have been prevented
from making this mistake if they had been using a larger context: the trigram iee does
not occur in the training data. The two-syllable strings in this set can be explained
by the occurrence of some accepted words from foreign languages in the training data
like shaket and faket. Acceptance of the consonant words was caused by the presence
of the two consonant interjections pst and sst in the training data set.

The errors for the positive test set are reasonable but we are less satisfied with the
errors the HMMs make for the negative test data. The tendency of the models to accept
too many unacceptable strings can be contributed to the small one character context
that they are using. Expanding the context of the models would mean using trigrams
instead of bigrams. However, then we would run into computational problems. The
trigram models will simply need more computational resources for training than we
presently have available. Therefore we will try to improve the performance of these
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0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0
1 0
0 0
1 0
0 0
0 0
0 0

0 0
1 0
0 0
1 0
0 0
1 0
1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0

Figure 2.14: Initial configuration for bigram HMMs for orthographic data that start
learning from linguistic knowledge. The value 0.0 indicates an impossible link or
an impossible character output and the value 1.0 indicates possible links or character
output.

models in a different fashion. We will supply the HMMs with some initial linguistic
knowledge and thus attempt to put constraints on the models that will be produced by
training. Our hope is that the constrained models will be more strict when evaluating
negative strings.

4.3 Orthographic data with linguistic initialization
In the second series of experiments we have used the bigram HMMs with an initial
configuration that was derived from the model from Cairns and Feinstein. In the initial
configuration we ignored the first characters of bigrams and we treated the output of a
XY bigram as the output of a Y unigram. The initial configuration contained two types
of values: value 0.0 and values larger than 0.0. The first value type indicated links
or bigram outputs which are impossible according to the phonological model from
Cairns and Feinstein. It was impossible for the HMM to change this value during
training. The other value type was used for parameters that represented possible links
or possible bigram outputs. These parameters were initialized with a random value.

An outline of the initial HMM configuration can be found in figure 2.14 and figure
2.15. This initial configuration was based on the Cairns and Feinstein model (see
section 2.4 of chapter 1). The original version of the Cairns and Feinstein model is
unable to explain the structure of all strings in orthographic training data. An HMM
that would use this model as initialization model would assign zero-scores to part of
our training data. This would make it unfit as an orthographic model since strings with
zero-scores should be rejected and we require that our models accept all training data.

We have made three extensions to the standard Cairns and Feinstein model in
order to make it usable as an initial orthographic model. First, the initial configuration
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SS S S S S1 2 3 4 5 6 7

pre-margin appendixpeaksatellitemargin core codasatellite

S

Figure 2.15: Initial bigram HMM for orthographic data. This is a graphical represen-
tation of the HMM parameters presented in figure 2.14. The visible features that were
added to the original Cairns and Feinstein model are the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), the outward link from state 2 (margin core)
and the backward link from state 6 (coda) to state 4 (peak). These links are necessary
to enable the model to handle consonant clusters (ch, vowel clusters (diphtongs) and
the non-vowel words in the training data set like b, c, pst etcetera.

for the A-matrix contains three extra links from a state to itself namely for state 2
(margin core), state 4 (peak) and state 6 (coda). These links are necessary because in
orthographic data some consonants (for example ch) and some diphtongs (for example
au) are represented by two tokens while the production of specific tokens is restricted
to specific states by the B-matrix, for example vowels can only be produced by state
4 (peak). When sounds are represented by a cluster of tokens it is necessary to use
a state that should produce such a cluster a number of times in succession. In order
to be able to do that the state should contain a link to itself. The link from state 7
(appendix) to itself is necessary because the appendix can contain more than one s
or t, for example: tam, tams and tamst in which the s’s and t’s should appear in the
appendix (this is already a feature of the standard Cairns and Feinstein model).

The second extension is the backward link: state 6 state 4 = coda peak.
The HMMs were not able to process the training data set without this backward link.
Leaving out the backward link would make the HMMs assign zero-scores to accepted
loan words as ace, creme and file. These words contain two isolated vowel groups.
However, we will enable only one state (peak) to produce vowels. To be able to
process words with two isolated vowel groups the HMMs will have to use this state
twice and therefore a backward link to state 4 (peak) is necessary. The danger of
having such a link in the HMMs is that they could use it for assigning high scores to
multiple syllable words.

The third extension of the Cairns and Feinstein model in this initial model is the
added possibility to finish a string after having processed the margin core (state 2).
In the initial model this is represented by a link from state two to the hidden eight
state. This link becomes visible in the second element of -matrix in figure 2.14. The
link is necessary to enable the HMMs to process interjections like pst and sst and the
consonants of alphabet (b, c, d, etc.) that are also present in our training data set as
words.
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nbr. rounds threshold positive accepts negative rejects
1. 43 3.313*10 15 595 509
2. 17 9.947*10 17 595 511
3. 63 3.337*10 15 595 508
4. 22 1.036*10 16 595 513
5. 47 1.439*10 14 595 514

avg. 38.4 16.9 595.0 0.0 (99.2%) 511.0 2.3 (85.2%)

Figure 2.16: The results of five experiments with linguistically initialized bigram
HMMs that processed orthographic data. After an average of 38 training rounds the
HMMs accepted 595 words of the positive test data set (99.2%) and rejected on aver-
age 511 strings of the negative test data set (85.2%). Eighty-two negative strings were
accepted by all five HMMs and five test words were rejected by all five HMMs.

The initial B-matrix contains three groups of tokens. The first group consists of
the vowels which can only be produced by state 4 (peak). The second group consists
of the consonants. These can be produced by any state except state 4 (peak). We have
regarded the single quote character (’, among others present in d’r, j’s and vla’s) as a
vowel. Finally there is the y which can be used both as a vowel and a consonant in
Dutch. This character can be produced by any state.

Like in the previous section we performed five experiments with different initial
parameter values. The results can be found in figure 2.16. The HMMs needed on
average only 38.4 rounds to become stable. Thus they trained faster than the HMMs
that were initialized randomly (t(4)=3.0, p 0.025, see section 2.5 of chapter 1). The
linguistic initialization procedure resulted in small increase of the positive test words
that were accepted: on average 595.0 compared with 593.4 for the randomly initialized
HMMs (t(4)=2.7, p 0.05). Contrary to our goal the HMMs with linguistic initializa-
tion rejected fewer incorrect strings from the negative test data set than the HMMs
that were initialized randomly: 511.0 compared with 546.2 (t(4)=4.3, p 0.01). We
have to conclude that the phonological model we used for initializing the HMMs is
not suitable for our orthographic data.

We have inspected one of the HMMs that resulted after training from a random
initialization. This model suggested that we should make three changes to our initial
model. First, we should allow vowel production in two states instead of one state. The
model suggested to use state 6 as an extra vowel state. This state would be allowed
to produce both consonants and vowels. The extra vowel state is necessary for being
able to process the foreign words with two vowel clusters. As a result of extending
the production capabilities of state 6 we can remove the backward link between state
6 and state 4. This is the second change we make to the model. Finally, the trained
HMM processed the quote character as a consonant, not as a vowel. We will make this
change in the initial model as well. There were other differences between the trained
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Figure 2.17: Modified initial configuration for bigram HMMs for orthographic data
that start learning from linguistic knowledge. In order to mimic the behavior of the
trained models with random initialization, we have removed the backward link from
state 6 to state 4 and allowed state 6 to produce vowels. Furthermore, we have treated
the quote character ’ as a consonant instead of a vowel.

randomly initialized model and our linguistic initial model but these three were the
most important ones. The initial model can be found in figure 2.17 and 2.18.

The HMMs trained with this initial configuration performed better with respect
to the negative strings than the previous linguistically initialized HMMs (figure 2.19).
They rejected 567 of the 600 negative strings (94.5%) compared with on average 511.0
rejected strings by the previous HMMs (t(4)=49.1, p 0.005) The training time needed
was about as long as the previous HMMs (52.2 rounds compared with 38.4 rounds,
t(4)=1.1 p 0.1) while they accepted fewer strings of the positive test data (593.4 com-
pared with 595, t(4)=6.5, p 0.005). If we compare these HMMs with the randomly
initialized HMMs we find out that they need about the same training time (52.2 rounds
compared with 77.8 rounds, t(4)=1.8, p 0.05), accept the same number of positive test
words (593.4 compared with 593.4, t(4)=1.8, p 0.25) and reject more strings of the
negative test data set (567 compared with 546.2, t(4)=2.5, p 0.05).

We can conclude that for orthographic data the performance of the HMMs can
be improved by starting training from a good initial HMM configuration. Construct-
ing the initial HMM from a phonological model without making any data-specific
adjustments did not provide us with good results. The difference between a good
phonological model and a good orthographic model is too large.

4.4 Phonetic data with random initialization
The third series of five experiments involved training randomly initialized HMMs to
process phonetic data. We have used the phonetic data described in section 2.2: a



Experiments with bigram HMMs 59

SS S S S S1 2 3 4 5 6 7S

Figure 2.18: Modified initial bigram HMM for orthographic data. This is a graphical
representation of the HMM parameters presented in figure 2.17. The backward link
from state 6 to state 4 has been removed from the model. The other features that were
added to the original Cairns and Feinstein model, the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), and the outward link from state 2 (margin
core), remained in the model.

nbr. rounds threshold positive accepts negative rejects
1. 55 2.841*10 14 593 567
2. 52 5.974*10 14 594 567
3. 21 6.092*10 14 594 567
4. 82 2.778*10 14 593 567
5. 51 2.847*10 14 593 567

avg. 52.2 19.3 593.4 0.5 (98.9%) 567 0.0 (94.5%)

Figure 2.19: The results of five experiments with bigram HMMs that processed or-
thographic data and used the modified linguistic initialization. After an average of 52
training rounds the HMMs accepted 593 words of the positive test data set (98.9%)
and rejected 567 strings of the negative test data set (94.5%). 33 negative strings were
accepted by all five HMMs and 6 test words were rejected by all five HMMs.

training data set of 5084 monosyllabic Dutch words, a positive test data set of 600
monosyllabic Dutch words that did not occur in the training data set and a negative
test set of 600 strings. The results of these experiments can be found in figure 2.20.

These five HMMs performed equally well as the five randomly initialized HMMs
that were trained on the orthographic data. They needed on average 68.6 training
rounds to become stable (similar the 77.8 for orthographic data, t(4)=0.5, p 0.25)
after which they accepted on average 594.6 words (99.1%) of the positive test data
set (similar to the 593.4 for orthographic data, t(4)=1.7, p 0.05) and rejected 565.6
strings (94.3%) of the negative test data set (better than the 546.2 for orthographic
data, t(4)=2.4, p 0.05). Five words of the positive test data set were rejected by all
five HMMs: fjord [fj rt], fuut [fyt], schwung [ wu ], schmink [ mi k] and schminkt
[ mi kt]. These words contain bigrams that are not present in the training data: [fj],
[fy], [u ] and [i ]. The HMMs assign the score 0 to these bigrams and therefore the
scores of these words also become 0.
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nbr. rounds threshold positive accepts negative rejects
1. 48 3.401*10 10 595 566
2. 58 6.274*10 11 595 568
3. 131 2.151*10 10 593 563
4. 41 4.240*10 10 595 565
5. 65 4.425*10 10 595 566

avg. 68.6 32.3 594.6 0.8 (99.1%) 565.6 1.6 (94.3%)

Figure 2.20: The results of five experiments with randomly initialized bigram HMMs
that processed phonetic data. After an average of 69 training rounds the HMMs ac-
cepted on average 595 words of the positive test data set (99.1%) and rejected 566
strings of the negative test data set (94.3%). Twenty-eight negative strings were
accepted by all five HMMs and five positive test words were rejected by all five
HMMs. Twenty-four of the universally accepted negative strings had an acceptable
phonetic representation. When we take this into account, the average performance of
the HMMs on the negative test data set becomes 98.3%.

Twenty-eight negative strings were accepted by all five HMMs: astt [ st], brhat
[br t], cci [ki:], ckeds [sk ts], cto [sto], deess [de:s], ejh [ j], ejss [ js], fovhst [f fst],
hurwd [hœrwt], kkraeb [kre:p], klolc [kl lk], kuktzt [kœktst], nalc [n lk], oarp [o:rp],
ousc [ usk], piuttd [pju:t], roqks [r ks], sassk [s sk], teaq [ti:k], terh [t r], tskip [tskıp]
ttik [tık], ttra [tra:], ttui [t y], twosd [tw st], udsb [œtsp] and uzs [y:s]. The or-
thographic representations of these words are not acceptable as monosyllabic Dutch
words but 24 of the 28 of the phonetic representations are acceptable. The four strings
that do not have an acceptable phonetic representation are: hurwd [hœrwt], klolc
[kl lk], tskip [tskıp] and udsb [œtsp]. The conversion of the orthographic represen-
tations to the phonetic representations has been done by a native Dutch speaker and
this might have resulted in ‘quasi-Dutch’ transcriptions. An inspection of the negative
data set resulted in two more acceptable transcriptions: tzips [tsIps] and ttsue [tsy:].
If we omit the 26 acceptable negative strings from the data, the model has rejected on
average 564.23 of 574 negative strings (98.3%) which is a good score.

4.5 Phonetic data with linguistic initialization
The results of the randomly initialized HMMs that processed phonetic data were ac-
ceptable. Still we are interested what the HMMs will do when they are provided with
basic initial phonotactic knowledge. In this experiment series we will apply linguis-

3When the strings tzips [tsIps] and ttsue [tsy:] are removed from the data the average rejection scores
will decrease with 1.0 because all HMMs rejected ttsue [tsy:] and with another 0.4 because two HMMs
rejected tzips [tsIps].
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Figure 2.21: Initial configuration for bigram HMMs for phonetic data that start from
basic phonotactic knowledge. The value 0.0 indicates an impossible link or an im-
possible character production and the value 1.0 indicates possible links or possible
character productions. The non-zero parameters were initialized with random values
before training.

tically initialized HMMs to phonotactic knowledge. The initialization model we will
use is the model of Cairns and Feinstein we have introduced in section 2.4 of chapter
1. Again we had to adapt the standard Cairns and Feinstein model in order to enable it
to handle all words of the training data set. This set contains two interjections (pst and
sst) and one abbreviation (s) that cannot be explained with the Cairns and Feinstein
model. In order to enable the models to handle these words we have added a link
from state 2 (margin core) to hidden eight state (see -matrix in figure 2.21 and figure
2.22). This link will enable the model to accept strings that do not contain a vowel.
Furthermore, we had to link state 1 (pre-margin) to itself in order to enable the models
to process the consonant clusters in pst and sst. All impossible links were removed
from the HMMs and they were prevented from restoring them. The initial model can
be found in figures 2.21 and 2.22.

Like in the experiments with the orthographic data the program was supplied with
information about the difference between vowels and consonants. Vowels were al-
lowed as the output of state 4 (peak) only and consonants were allowed as the output
of any other state (see B-matrix in figure 2.21). The task of the HMMs was to find out
the best values of the state transitions in the model (A-matrix, -matrix and -matrix)
and discover what consonants are allowed in which state (B-matrix). The values of
impossible links (A-matrix, -matrix and -matrix) and probabilities of impossible
productions of characters were initialized with zero. All other model parameters were
initialized with a random value. We performed five experiments with this set-up. The
results can be found in figure 2.23.

The HMMs needed on average 28.2 rounds to become stable. Thus they need less
training rounds than the models without linguistic initialization (68.6 rounds, t(4)=2.3,
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margin core
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peak satellite coda appendixsatellitepre-margin

Figure 2.22: Initial bigram HMM for phonetic data. This is a graphical representation
of the HMM parameters presented in figure 2.18. The two visible differences between
this model and the original phonological model of Cairns and Feinstein are the extra
link leaving state 2 (margin core) and the self-link at state 1 (pre-margin). These links
are necessary to enable the model to handle the non-vowel interjections pst and sst,
the abbreviation s and the consonant clusters in these strings.

nbr. rounds threshold positive accepts negative rejects
1. 33 1.575*10 10 594 570
2. 48 1.614*10 10 595 570
3. 17 1.213*10 10 595 570
4. 10 3.562*10 11 595 569
5. 33 3.562*10 11 594 570

avg. 28.2 13.4 594.6 0.5 (99.1%) 569.8 0.4 (95.0%)

Figure 2.23: The results of five experiments with linguistically initialized bigram
HMMs that processed phonetic data. After an average of 28 training rounds the
HMMs accepted on average 595 words of the positive test data set (99.1%) and re-
jected 570 strings of the negative test data set (95.0%). When we removed strings
with an acceptable phonetic transcription from the negative test data the HMMs ob-
tained a rejection score of 99.1% on this test set.

p 0.05). The models accepted on average 594.6 words of the positive test data and
this is exactly as many as the HMMs with random initialization (594.6 words, t(4)=0.0,
p 0.25). They rejected more strings of the negative test data set (569.8) than the
models of the previous section (565.6 strings, t(4)=5.0, p 0.005).

Twenty-nine negative strings were accepted by all five HMMs and five test words
were rejected by all five HMMs. The five uniformly rejected test words were the same
as in the experiments with randomly initialized HMMs. Again the words received
the score zero because they contained bigrams that do not occur in the training data.
Of the 29 accepted strings from the negative test data set 24 were in the set of 26
reasonable phonetic transcriptions (see previous section). The other five universally
accepted strings were not acceptable: ephtsb [ ptsp], hurwd [hœrwt], klolc [kl lk],
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sfhi [sfi:] and udsb [œtsp]. When we remove the 26 reasonable transcriptions from
the data the HMM has rejected on average 568.6 of 574 negative strings (99.1%).
This is an improvement compared with the average score of 98.3% achieved in the
experiments with random initialization (t(4)=4.9, p 0.005).

5 Concluding remarks

It is possible to use Hidden Markov Models (HMMs) for building phonotactic models
from a list of monosyllabic words. The resulting HMMs show recognition of language
specific features such as vowel-consonant distinction. Unigram HMMs perform well
in recognizing the difference between a set of positive test data and a set of negative
test data. However, recognizing the difference between individual cases is a problem:
the unigram HMMs often assign higher scores to incorrect data than to correct lan-
guage data. The main problems are that standard unigram HMMs do not pay attention
to the context of a character and that they exaggerate the influence of sequence length
on sequence score. Providing the unigram HMMs with initial phonotactic knowledge
shortens the training phase but it does not increase their performance after training.

Bigram HMMs with score correction for sequence length perform better. They
misclassify few words and recognize a clear difference between positive test data and
negative test data accepting on average 99.1% of a set of unseen correct words in pho-
netic representation (98.9% for orthographic data) while rejecting on average 98.3%
of a set of impossible negative phonetic test sequences (91.0% for orthographic data).
Providing initial linguistic knowledge to the HMMs caused a significant and large
increase of the training speed for the phonetic data but only small increases in perfor-
mance. The number of training rounds needed went down from an average of 68.6 to
28.2 for phonetic data (t(4)=2.3, p 0.05, see section 2.5 of chapter 1). The acceptance
rate for the positive phonetic test data was the same for randomly and linguistically ini-
tialized HMMs (99.1%) but the rejection rate of the negative test data showed a small
increase from 98.3% for the randomly initialized HMMs to 99.1% for the linguisti-
cally initialized HMMs (t(4)=6.2, p 0.005). HMMs with initial linguistic knowledge
that processed orthographic data needed approximately the same number of training
rounds as HMMs that were initialized randomly and performed worse. The phonolog-
ical model that we used for initializing the HMMs was not suitable for orthographic
data.

We can examine two of the three research questions mentioned in chapter 1. The
phonetic data format seems to be better suitable for our problem. HMMs that pro-
cessed orthographic data accepted as many positive test words as those that processed
phonetic data but the latter rejected significantly more negative strings. Starting from
basic phonotactic knowledge enables the HMMs to produce better models but the dif-
ference was only noticeable in the rejection rates of the negative data. Both HMMs
that processed orthographic data as those that processed phonetic data accepted as
many positive test data with and without initial knowledge but the rejection rates for
negative data were significantly larger for the initialized HMMs.
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The models that we have built in this chapter suffer from one of the problems that
were mentioned in (Fudge et al. 1998) namely the presence of loan words in the data.
These words have complicated the models. However, it is not easy to remove the loan
words from the data set without making assumptions about the structure of the words.
Therefore, we have chosen to leave these words in the training and test data. Fudge
and Shockey have also recognized the problem of accepting incorrect strings when
no context information is used. We have discussed this problem in section 3.4 with
the example string pajn and solved the problem by using bigram HMMs instead of
unigram HMMs. Our orthographic bigram models reject two of the three problematic
words mentioned in (Fudge et al. 1998): smlasr and sdring. These strings should also
be impossible in Dutch. The third word, ssming, is accepted by the models because
the unusual onset ss occurs in the interjection sst which is present in the training data.

Fudge and Shockey also discuss the difference between accidental and systematic
gaps in language patterns. Our approach to this is to regard any string that is not
accepted by a model as a systematic gap and regard all strings that are accepted by a
model but that are not present in the language as an accidental gap. Thus the difference
between accidental and systematic gaps has become a model-dependent difference.

The models derived in this chapter satisfy two of the five properties Mark Ellison
outlined in his thesis (Ellison 1992). They are cipher-independent (independent of the
symbols chosen for the phonemes) and language-independent (they make no initial
assumptions specific for a certain language), but their internal structure is neither ac-
cessible nor linguistically meaningful. The HMMs also fail to satisfy Ellison’s first
property (operation in isolation) because they receive preprocessed language input:
monosyllabic words. The removal of the monosyllabicity constraint we put on our
training data is an interesting topic for future work.


