
Chapter 4

Rule-based Learning

Theories in theoretical linguistics usually consist of sets of discrete non-statistical
rules. However, the models that we have developed in the previous chapters have a
different format. It would be interesting to obtain phonotactic models that consist of
rules. We could obtain such models by converting our HMMs and our SRN mod-
els to sets of rules. However, there are also rule-based learning methods available
which generate rule models. Given linguists’s preference for rule-based description,
we might expect these methods to perform better than the other learning methods we
have applied to our problem, learning the structure of monosyllabic words. Therefore
we would like to apply rule-based learning methods to this problem and compare their
performance with the performances we have obtained in the previous chapters.

In this chapter we will describe a rule-based approach to learning the phonotactic
structure of monosyllabic words. In the first section we will sketch the fundamentals
of rule-based learning and point out some of its problems. The second section will
outline the learning method we have chosen: Inductive Logic Programming (ILP).
The learning experiments that we have performed with ILP will be presented in the
third section. In the fourth section we will describe our work with more elaborate
rule-based models which might perform better than the models used in section three.
The final section contains some concluding remarks.

1 Introduction to Rule-based Learning

In this section we will present some basic learning theory and evaluate a few rule-
based learning algorithms. We will start with the influence of positive and negative
examples on the learning process. After this we will explain what kind of output we

95

96 chapter 4

expect from the learning method. We will conclude the section by presenting some
rule-based learning methods and discussing their problems.

1.1 Positive versus negative examples
We want to use a symbolic or rule-based learning technique for acquiring a rule model
for the phonotactic structure of monosyllabic words. This means that we are looking
for a learning method that can produce a rule-based model that can accept or reject
strings for a certain language. The model should accept a string when it is a possible
word in the language and it should reject it when it is a sequence of characters that
cannot occur as a word in the language.

Theory about learning methods that can produce language models like described
above is already available. One of the main papers in learning theory was written
by E. Mark Gold in the sixties (Gold 1967). In the paper Gold uses a division of
languages in different mathematical classes to characterize the type of information
that a hypothetical learner requires to learn them. He proves that no infinite language
can be learned by using positive examples only. This means that learners cannot be
guaranteed to acquire a perfect model of an infinite language without being presented
with examples of strings or sentences that do not appear in the language.

The research result of Gold is important for the work we will present in this chap-
ter. In our earlier experiments we have presented the learning algorithms only with
positive examples. We want to be able to compare the results of this chapter with the
results of the previous chapters in a fair way. This prevents us from using negative
examples in the remaining experiments. We want our language models to generate as
few errors as possible and therefore it is important to find out if the language we are
trying to learn is finite.

In chapter one we have restricted our dataset to monosyllabic words. The longest
word in the Dutch orthographic data set contains nine characters. We can imagine that
it is possible to construct a word of ten or eleven characters that could qualify to be a
monosyllabic Dutch word. However we cannot imagine that it is possible to construct
monosyllabic Dutch word of twenty characters or longer.1 The class of monosyllabic
words will be finite for all human languages. Thus it should be possible to acquire
a good monosyllabic structure model by using positive examples only. This would
not have worked for multisyllabic words since in languages like Dutch and German
there does not seem to be a maximum length for words, particularly not for compound
words.

1In some unusual contexts strings with an arbitrary number of repetitions of the same character, like
aaaah and brrrr, may qualify as a monosyllabic word. The models which we will use will be able to learn
these by adopting the following strategy: a sequence of two or more repeated characters indicates that the
repetition in that context is allowed for any number of characters.

Introduction to Rule-based Learning 97

1.2 The expected output of the learning method
In his landmark paper Gold introduces the concept learning in the limit. Learners
are presented with positive and/or negative examples of a certain domain. They have
a partial model of this domain and adjusts this model for every example that they
receive. At some moment they will have constructed a perfect model of the domain
and future examples will not cause a change of the model. If the learners manage to
construct such a perfect model at some point of time then they are said to have learned
the training data in the limit.

The learner model put forward by Gold makes no assumptions about the format
of the domain model that has to be learned. In case of a finite domain the model may
well consist of rules which state that some X is in the domain if and only if X was
presented as a positive example. This is the most simple domain model structure. A
model structure like that will not perform well in the experiments we are planning to
do because it is unable to generalize. In the previous chapters we have presented the
learning methods with only a part of the positive data. After this we have tested the
domain models with the remaining unseen positive data and some negative data. A
simple domain model like described above would reject all the unseen positive test
data. This is unacceptable.

In order to avoid this problem the domain model must be able to generalize. Based
on positive data only it must be able to decide that the unseen positive test data is cor-
rect. In order for the model to be able to do that, we will have to put generalization
knowledge in the learning model. The question is what kind of generalization knowl-
edge the model needs to contain. If the knowledge is too restrictive the domain model
will reject too much positive test data and if it is too extensive the domain model will
accept negative data as well. We will return to this question in section 2.

In the previous two chapters we have worked with Hidden Markov Models and
neural network models that represent the structure of monosyllabic words. A disad-
vantage of these two groups of models is that they hide knowledge in sets of numbers.
It is hard to explain the behavior of these models in a way that makes much sense to
humans. We believe that the behavior of the models generated by the symbolic learn-
ing method should be comprehensible to humans - at least to linguists - in a sensible
way. An advantage of this is that explainable models allow finding the cause of possi-
ble errors in the model more easily so we will be able to correct them. The behavior of
a model consisting of rules can be explained in a sensible way and therefore we want
the models generated by the symbolic learning method to consist of rules.

1.3 Available symbolic learning methods
There are many symbolic or rule-based learning methods available (Winston 1992). In
this chapter we will concentrate on two groups of symbolic learning methods which
are currently the most popular ones: lazy learning and decision trees. Learning meth-
ods that fall in these classes are generally used for classification tasks (Van den Bosch
et al. 1996b).

98 chapter 4

has_hair?

stings?

mammal is_small?

can_fly?

reptilebirdbug bird

yes

yes

yes yes

no

no

nono

Figure 4.1: An example decision tree for animal classification. A number of questions
have to be answered in order to come to a classification. This tree would classify a
mosquito as a bug because it does not have hair, is small and stings.

Lazy learning methods or memory-based methods learn the structure of a domain
by storing learning examples with their classification (Van den Bosch et al. 1996b).
The domain model that results from a lazy learning process is able to generalize by
using a predefined distance function. When the domain model is required to give the
classification for an unseen domain element then it will use the distance function for
finding the stored example that is closest to this unseen example.

The following is a simple application of a lazy learning method to animal classi-
fication. Suppose we know the classification of the two animals lion and mosquito.
A lion has been classified as a mammal and a mosquito has been classified as a bug.
This information is presented as information to the learning algorithm together with
features representing the two animals, for example [big, has hair , eats animals] for
lion and [small, can fly , stings] for mosquito. The algorithm will compare the fea-
tures for new animals and classify them either as mammal or bug depending on how
many features the new animals have in common with the stored animals. For example,
a bat with the features [small , can fly , has hair] would have been classified as a bug
because it has two features in common with mosquito and only one with lion.2

Decision tree methods like, for example, C4.5 build a tree describing the structure
of the domain (Quinlan 1993). The nodes of the tree consist of questions regarding
the values of the elements of the domain. When one wants to know the classification
of a certain domain example one will start at the root of the tree and answer the first
question with regard to the example. The answer to the question will lead to another
node with another question. In this way one will traverse the tree until a leaf node is
reached. This leaf node contains the classification of the example.

A decision tree method applied to our animal classification example could result
in a tree which contained only one question. There are several alternative questions
possible and the method has too few learning examples to make a good choice. A

2In our example the classification algorithm assign the same weight to all features but this does not
necessarily have to be so.

Inductive Logic Programming 99

possible question discriminating the two learning examples could have been Does it
have hair?. The answer yes would result in a mammal classification because a lion
has hair and the answer no would result in a bug classification. This question would
classify bat as a mammal because it has hair.

Both decision tree methods and lazy learning methods have some problems when
applied to our learning problem with the constraints we have put on the output from
the learning method. First of all these learning methods require learning examples
of all possible qualification classes. Our research problem contains two qualification
classes: valid strings and invalid strings. However we want to use the same learning
input as used in our previous experiments and this means that we want to train the
symbolic learning method by using positive examples only. Neither decision tree
methods nor lazy learning were designed for training with positive examples only.3

A second disadvantage of these two symbolic learning methods is that they do not
generate rules. Instead they hide knowledge in a big database of examples combined
with a distance function (lazy learning) or a tree with decision nodes (decision trees).
There are ways of converting the behavior of decision tree models to comprehensible
rules but for the behavior of lazy learning models this will be very difficult. Still we
would like to keep our constraint of generating a model that consists of rules and use
that to mark these two model structures as a disadvantage.

These two disadvantages make the use of either lazy learning or decision tree
learning unacceptable to us. Other rule-based methods suffer from similar prob-
lems. Version Spaces require negative examples in order to derive reasonable models
((Winston 1992), chapter 20). C4.5 is a decision tree method and thus it requires neg-
ative examples as well (Quinlan 1993). Explanation-Based Learning is able to learn
from positive data only by relying on background knowledge (Mitchell et al. 1986).
The learning method that we have chosen uses the same approach. We will describe
this learning strategy in the next section.

2 Inductive Logic Programming

In this section we will describe the symbolic learning method Inductive Logic Pro-
gramming (ILP). The description has been divided in four parts: a general outline,
a part about the background knowledge concept, a part on how ILP can be used in
language experiments and a part which relates our models to grammar theory.

2.1 Introduction to Inductive Logic Programming
Inductive Logic Programming (ILP) is a logic programming approach to machine
learning (Muggleton 1992). The term induction in the name is a reasoning technique

3See the section 1.1 of this chapter and section 1.3 of chapter 1 for a motivation about using only positive
examples

100 chapter 4

which can be seen as the reverse of deduction. To explain inductive reasoning we first
look at a famous example of deduction:

P1 All men are mortal.
P2 Socrates is a man.
DC Socrates is mortal.

This example contains two premises P1 and P2. By using these two premises we can
derive by deduction that DC must be true. Thus deduction is used to draw conclusions
from a theory.

In inductive reasoning we start with facts and attempt to derive a theory from facts.
An example of this is the following derivation:

P1 All men are mortal.
P2 Socrates is mortal.
IC Socrates is a man.

Again we have two premises P1 and P2. By using these two we can derive by induc-
tion that IC could be true. An inductive derivation like this one can only be made if
the inductive conclusion (IC) and one premise (here P1) can be used for deductively
deriving the other premise (here P2). The inductive derivation is not logically sound:
that is, the result of the derivation might be wrong. Yet inferences like these are made
by humans in everyday life all the time and they are exactly what we are looking for.
Inferences like these give us a method for deriving a theory from a set of facts.

ILP theory makes a distinction between three types of knowledge namely back-
ground knowledge, observations and hypotheses (Muggleton 1992). Background knowl-
edge is initial knowledge that learners have before they start learning. Observations
are the input patterns for the learning method with their classifications. The hypothe-
ses are the rules that ILP derives from the training data. The relation between these
three knowledge types can be described with two rules:

DR: Example: B All men are mortal.
H Socrates is a man.
O Socrates is mortal.

IR: Example: B All men are mortal.
O Socrates is mortal.
H Socrates is a man.

These rules contain three symbols: stands for and, stands for leads deductively to
and stands for leads inductively to. DR represents the deductive rule which states
that the observations (O) are derivable from the background knowledge (B) and the
hypotheses (H) (Muggleton 1992). The inductive rule IR represents the inductive step
that we want to make: derive hypotheses from the background knowledge and the
observations.

Inductive Logic Programming 101

S S5 6

S7

clan...

7

s

aa

b7,s

7,6

a5,6

a5,

Figure 4.2: A schematic representation of the addition of a character after a valid word
in an HMM. The character s is appended to word clan and as a result of this the path
from state 5 via state 7 to 6 will be used during processing. The score assigned by
the HMM to the word clans will be equal to the score assigned to clan multiplied with
the factor 5 7 7 7 6 5 6.

The inductive rule IR can be used for deriving many different hypotheses sets and
the most difficult problem in ILP is to constrain the number of hypotheses sets. Ini-
tially only one restriction will be placed on the hypotheses sets: they must satisfy the
deductive rule. In our inductive Socrates example the fact All men are mortal would
be background knowledge and Socrates is mortal would be the observation. Then
Socrates is a man would be a valid hypothesis because we can derive the observation
from this hypothesis and the background knowledge. The fact Socrates is a philoso-
pher cannot be used in combination with the background knowledge to derive the
observation and therefore this fact is not a valid hypothesis.

In our Socrates example we could also have generated the hypothesis All things
named Socrates are man. This is an example of an alternative valid hypothesis. The
facts in the background knowledge and the observations are usually larger in number
than in this toy example. The number of valid hypotheses will grow rapidly with any
fact we add to the background knowledge and the observations. (Muggleton 1992)
suggests four ways for reducing the number of hypotheses: restricting the observa-
tions to ground literals,4 limiting the number of the hypotheses to one, restricting the
hypotheses to the most general hypotheses relative to the background knowledge and
choosing the hypotheses which can compress the observations as much as possible. In
section 2.3 we will discuss these reduction ways and outline which one we will use.

If we want to apply ILP to the problem of acquiring the structure of monosyllabic
words then we will have to make two decisions. First we have to decide what we
should use as background knowledge. Second we should decide how we are going to
use the induction rule for generating monosyllabic word models in practice. We will
deal with these two topics in the next two sections.

4A ground literal is a logical term without variables. For example the term man(Socrates) is a ground
literal but man(x) mortal(x) is not because it contains a variable (x).

102 chapter 4

2.2 The background knowledge and the hypotheses
Before we are going to deal with the format and contents of the background knowl-
edge and the hypotheses that are appropriate for our problem we first have to note
that there is an important constraint on these bodies of knowledge. We will compare
the results of ILP with the results of the previous chapters in which Hidden Markov
Models (HMMs) and Simple Recurrent Networks (SRNs) were used. If we want this
comparison to be fair then we should take care that no learning method receives more
learning input than another. This imposes a constraint on ILP’s background knowl-
edge and the format of the hypotheses. There is a danger that we use background
knowledge that give ILP an advantage over the other two algorithms. This should be
avoided.

In our application of ILP to the acquisition of monosyllabic word models the back-
ground knowledge and the hypotheses will contain explicit and implicit knowledge
about the structure of syllables. In order to make sure that this knowledge does not
give ILP an advantage over the other two learning algorithms we will show how this
knowledge is implicitly used in HMMs. This explanation will require some basic
HMM knowledge of the reader. You can look back at chapter 2.1 if necessary.

In our ILP models we want to use rules which add a character to a valid word and
thus produce another valid word. An example of such a rule is: When an s is added
behind a valid word that ends in n the resulting word will be valid as well. Rules of
this format are implicitly used in HMMs:

Suppose an HMM is able to process the words clan and clans and accepts both
words. If we ignore all but the most probable path, processing clan involves using
six states because it contains four visible characters, a begin-of-word character and an
end-of-word character. We can label the states in this path with the numbers one to
six. The word clans can be processed with the same path with one extra state inserted
between state five and state six. This extra state will take care of producing the suffix
s and we will call it state seven (see figure 4.2).

The HMM will assign a different probability to the two words. We can encode the
difference with the formula:

5 7 7 7 6 5 6

in which P(W) is the score assigned by the HMM to the word W, is the probabil-
ity of moving from state to state , and is the probability that state produces
character . The link from state five to six (5 6) has been replaced by the links from
state five to seven (5 7) and state seven to six (7 6). Furthermore the probability of
producing character s in state seven has to be taken into account (7). Figure 4.2
contains a schematic representation of the change in the HMM processing phase. The
probabilities of the words may be different but the HMM accepts both words. This
could have been explained if we knew that the factor 5 7 7 7 6 5 6 is equal
to one. We don’t know if that is true but we will assume that it is true.5

5Here we have assumed that we have a perfect HMM; one that assigns the score one to all valid strings

Inductive Logic Programming 103

1w2 wn-1 wn...w1w2 wn-1 wn...

w

w

1 ...w2 wn-1 w2 wn-1 wnwn w1...

Figure 4.3: A tree representation of the background knowledge suffix rule (left tree)
and the background knowledge prefix rule (right tree). Word W= 1 2 1 is a
valid word if its final character is a valid suffix for words ending in its penultimate
character 1 and if 1 2 1 is a valid word. Word W is a valid word if its
initial character 1 is a valid prefix for words starting with its second character 2

and if 2 1 is a valid word.

If we assume that the factor is equal to one then we can add s7 to any path for
words that end in n and create new words that end in ns. So we can translate the
assumption to a rule that states that from every valid word which ends in n one can
make another valid word by adding a suffix s to the word. Our motivation for choosing
a context string of length one is that we have used context strings of the same length
in the HMM chapter. The final version of the assumption is exactly the rule which we
started with: When an s is added behind a valid word that ends in n the resulting word
will be valid as well.

Now we have derived a rule which is being used implicitly in the bigrams HMMs
we have worked with in chapter 2. This means that we can use the rule in the ILP
model. The rule could be used as a hypothesis. However we want our hypotheses to
be as simple as possible and therefore we will split the rule in a background knowledge
part and a hypothesis part. The background knowledge part has the following format:

BACKGROUND KNOWLEDGE SUFFIX RULE

Suppose there exists a word W= 1 1 (1... are characters)
and a suffix hypothesis SH(1,).
In that case the fact that W is a valid word will imply that 1 1 is a
valid word and vice versa.

Now the SUFFIX HYPOTHESIS for this specific case would be defined as SH(n,s)
which states that an s is a valid suffix for words ending in n. This hypothesis format
regards a character in a context containing one neighboring character. This implies
that we are working with character bigrams just like in our HMM experiments.

The convention in the ILP literature is to represent knowledge in Prolog-like rules.
These rules have the format A B,C which means that A is true when both B and
C are true. The capital characters can be replaced by predicates like abcd(X) which

and the score zero to all invalid strings. In practice there will be some deviation in the string score. The
factor 5 7 7 7 6 5 6 will nearly always be smaller than one but this problem was fixed in our
HMMs by score correction for length (section 3.4 of chapter 2) so that it does not affect our assumption.

104 chapter 4

stands for the proposition X has property abcd. We will include a similar notation in
our definitions of background knowledge. The background knowledge suffix rule can
be represented with two rules: valid(1 1) valid(1 1),SH(1,)
and valid(1 1) valid(1 1),SH(1,).

Now that we have derived one background rule we can build other background
rules in a similar way. We need a rule which adds a character to the front of a word,
for example: a valid word that starts with p can be converted into another valid word if
we put an s in front of it. Again we will split this rule into a general part for the back-
ground knowledge and a specific part which will be a hypothesis. The background
part of this prefix rule has the following format:

BACKGROUND KNOWLEDGE PREFIX RULE

Suppose there exists a word W= 1 2 and a prefix hypothesis PH(1, 2).
In that case the fact that W is a valid word implies that 2 is a valid
word and vice versa.
Rule notation: valid(2) valid(1 2),PH(1, 2)

valid(1 2) valid(2),PH(1, 2)

And the PREFIX HYPOTHESIS for this specific case can be specified as PH(s,p) which
states that an s is a valid prefix for words starting with p.

The two rules can be used for explaining why complex words are valid based on
the fact that basic words are valid. We need a rule that specifies what specific basic
words will be valid. This rule will be very simple: a word will be valid when it has
been defined as a valid basic word. Again we will divide this rule in two parts: a
background knowledge part and a hypothesis part. The definition of the background
part is:

BACKGROUND KNOWLEDGE BASIC WORD RULE

The existence of a basic word hypothesis BWH(W) implies that word W
is a valid word.
Rule notation: valid(W) BWH(W).

And an example of a BASIC WORD HYPOTHESIS is BWH(lynx) which states that
lynx is a valid word.

This concludes the derivation of the background knowledge and the format of the
hypotheses. By starting from an HMM that processed a word we have derived the
format of three hypotheses and three background knowledge rules. In the background
knowledge we have defined that words can be regarded as a nucleus to which prefix
characters and suffix characters can be appended. This knowledge is implicitly avail-
able in HMMs so by using it in or ILP rules we have not supplied the ILP algorithm
with knowledge that was not available to the learning algorithms used in the previous
chapters.

Inductive Logic Programming 105

2.3 Deriving hypotheses
Now that we have defined the background knowledge and the format of the hypotheses
we should explain how an ILP algorithm can derive the hypotheses from the learning
input. This means that we must make explicit how the inductive rule IR defined in
section 2.1 will be realized in practice. As we have explained there are many sets
of hypotheses that can be derived by this rule. The most important problem in using
this inductive rule is cutting down the number of acceptable hypothesis sets without
removing the interesting ones.

We will derive three inference rules based on the background knowledge format
we have described in the previous section. This derivation will be based on an exam-
ple. We will try to use ILP for generating a model which describes the three words
clan, clans and lans. These will be our observations and the background knowledge
will be as described in section 2.2. Our task is to derive suffix hypotheses, prefix
hypotheses and basic word hypotheses for these observations.

In this particular example the words can be explained by each other in combination
with appropriate suffix hypotheses and prefix hypotheses. If this had not been the case
we would have been forced to define the validity of the three words with three basic
word hypotheses without being able to add any other hypotheses. We will consider
the recognition of basic word hypotheses as the initial step of the ILP algorithm. This
initial step can be made explicit with the following inference rule:

BASIC WORD INFERENCE RULE

If word W is a valid word then we will derive the basic word hypothesis
BWH(W). All observed words are valid words.
Rule notation: valid(W)

BWH(W)

In our example this inference rule will produce the hypotheses BWH(clan), BWH(clans)
and BWH(lans). These hypotheses can be used in combination with the background
knowledge basic word rule to prove that the three words are valid. By using the basic
word inference rule we have derived a model that explains the learning input data.
This model is an example of the simple domain model we have discussed in section
1.2. The problem of that model was that it will reject all unseen data because it is
unable to generalize. This means that we should restructure the model to enable to
generalize. Two other inference rules will take care of that.

We can prove that clans is a valid word by using the basic word hypothesis
BWH(clans) and the background knowledge basic word rule. The fact that this word
is valid could also be explained by the fact that lans is valid in combination with the
background prefix rule and a prefix hypothesis PH(c,l). The latter hypothesis does not
exist in our present model and we want to be able to derive it. The hypothesis is not
necessary for explaining the valid word but it will add generalization possibilities to
the model. It is very important that the final model is able to generalize and therefore
we will include in it all prefix hypotheses and all suffix hypotheses which can be used
for explaining valid words.

106 chapter 4

Prefix hypotheses can be derived with the following inference rule:

PREFIX HYPOTHESIS INFERENCE RULE

If W= 1 2 is a valid word and 2 is a valid word as well then
we will derive the prefix hypothesis PH(1, 2).
Rule notation: valid(1 2),valid(2)

PH(1, 2),valid(2)

Since both clans and lans are valid words we can use this inference rule to derive the
prefix hypothesis PH(c,l). This hypothesis can in turn be used in combination with
the background knowledge prefix rule and the fact that clan is valid to prove that lan
is valid. The latter word was not among the observations so this is an example of
the generalization capabilities of an extra prefix hypothesis. Note that the background
knowledge prefix rule can be used in two directions: with PH(c,l) and BWH(lan) we
can prove that clan is valid and with PH(c,l) and BWH(clan) we can prove that lan is
valid.

The suffix hypothesis inference rule has a similar format as the prefix hypothesis
inference rule:

SUFFIX HYPOTHESIS INFERENCE RULE

If W= 1 1 is a valid word and 1 1 is a valid word as well
then we will derive the suffix hypothesis SH(1,).
Rule notation: valid(1 1),valid(1 1)

SH(1,),valid(1 1)

In our example model we can use this suffix hypothesis inference rule with either
of the valid word pairs clan and clans or lan and lans for deriving the suffix hy-
pothesis SH(n,s). After having removed redundant basic word hypotheses, our final
model for the observations clan, clans and lans will consist of the background knowl-
edge defined in the previous section in combination with one basic word hypothesis
BWH(lan), one prefix hypothesis PH(c,l) and one suffix hypothesis SH(n,s).

Now we have defined a method for deriving hypotheses for a specific format of
background knowledge and observations. The derivation method uses only one of the
four hypotheses space reduction methods mentioned in (Muggleton 1995): the obser-
vations are ground literals. We did not limit the number of derivable hypotheses to
one. On the contrary we want to derive as many valid hypotheses as possible because
they will improve the generalization capabilities of the final model. The derived hy-
potheses were neither restricted to the most general hypotheses nor to the ones that
compressed the observations as much as possible. Instead of that we have limited the
inference rules in such a way that one rule can only derive one particular hypotheses
as the explanation of a single item of data or a pair of data. The inference process is
deterministic and we will accept all the hypotheses it derives.

We will not use the two general purpose ILP software packages available: Golem
and Progol (Muggleton 1995). These impose restrictions on either the background
knowledge or the observations which we cannot impose on our problem. Golem tries

Inductive Logic Programming 107

to limit the number of acceptable hypotheses by restricting the background knowledge
to ground knowledge. This means that there are no variables allowed in the Golem
background knowledge. In order to be able to process background knowledge that has
been derived using clauses containing variables, Golem provides a method for con-
verting parts of that knowledge to variable-free clauses. Our background knowledge
contains clauses with variables. Since we are working with finite strings the back-
ground knowledge can in principle be converted to variable free rules. However this
will make it so large that it will be unwieldy to work with in practice. The background
knowledge cannot be converted to a usable format that is acceptable for Golem and
this makes Golem unusable for our data.

Progol does not have the background knowledge restriction of allowing only vari-
able-free clauses. However the Progol version that we have evaluated required both
positive and negative examples in order to generate reasonable output. Muggleton
has described a theoretical extension to enable Progol to learn from positive data only
(Muggleton 1995). As far as we know this extension has not been added to the soft-
ware yet.6 Because we only want to supply positive examples to our learning problem
Progol was inadequate for tackling this problem.

2.4 The hypothesis models and grammar theory
The models that we will derive for our data consist of three types of rules: basic word
hypotheses, prefix hypotheses and suffix hypotheses. It is theoretically interesting to
find out to which grammar class these models belong. In this section we will show that
the behavior of our learning models can be modeled with regular grammars. These
grammars generate exactly the same class of languages as finite state automata.

Regular grammars consist of rules that have the format S xA or A y (Hopcroft
et al. 1979). Here A and S are non-terminal character while x and y is a terminal
character. The grammars generate strings by applying a sequence of rules usually
starting with a start non-terminal S. For example, with the two rules presented here we
could change the start token S in xA with the first rule and successively in xy with the
second rule. The result is a string of terminal symbol and our grammar has generated
this string.

Words in our rule-based model are built by starting from a nucleus and subse-
quently adding prefix characters and suffix characters. We will derive an equivalent
regular grammar which builds words by starting with the first character and subse-
quently adding extra characters or character strings until the word is complete. The
regular grammar will make use of non-terminal symbols to simulate context depen-
dencies within the word. Each character will have two corresponding non-terminal
symbols: a prefix symbol P and a suffix symbol S .

In our earlier examples we have used the word clans. This word will be build
in our rule-based model as follows: start with the basic word lan, add the character
c before it to obtain clan and add the character s behind it to obtain clans. In the

6A new version of Progol which allowed learning with positive training data only was released in 1997.

108 chapter 4

equivalent regular grammar we will start with cP , replace P with lanS to obtain
clanS , replace S with sS to obtain clansS and replace S with the empty string to
obtain clans.

There are a number of constraints on the intermediate strings that the regular gram-
mar produces in derivations. First, the intermediate strings will always consist of a
sequence of terminal symbols (a, b, c etc.) followed by one optional non-terminal
symbol (P or S). Second, the symbol P can only be replaced with an intermedi-
ate string that starts with x . Third, when an intermediate string ends in x S then x
and x will always be the same character. Fourth, the symbol S can only be replaced
with a string of the format x S or with the empty string.

In the previous section we have derived a small rule-based model containing three
hypotheses: BWH(lan), PH(c,l) and SH(n,s). We will define conversion rules which
can be used for converting this model to a regular grammar containing the rules:

BWH(lan) S lanS (1)
P lanS (2)
S e (3)

PH(c,l) S cP (4)
SH(n,s) S sS (5)

S e (6)

(e stands for the empty string) This grammar produces exactly the same strings as the
original rule based model: lan, clan, lans and clans. For example, we can generate
the string clans by applying rule (4) to the start symbol S (result cP) after which we
successively apply rules (2) (clanS), (5) (clansS) and (6) to obtain the target string
clans.

Now that we have seen an example for the regular grammar at work we can define
the necessary rules for converting the hypotheses to regular grammar rules. We will
start with a conversion rule for suffix hypotheses:

SUFFIX HYPOTHESIS CONVERSION RULE

A suffix hypothesis SH(x ,x) is equivalent to the set of regular grammar
rules S x S , S e .

The suffix hypothesis SH(x ,x) allows appending x to a word that has final character
x . In the regular grammar model an intermediate string of which the final terminal
symbol is x will initially be followed by the non-terminal S . Thus we can simulate
the suffix hypothesis by creating a rule which replaces this non-terminal symbol with
x S . The S non-terminal symbol in the added string makes possible the addition
of extra characters. However, if we want to create proper words that end in x we need
to be able to remove the non-terminal symbol from the intermediate string. Therefore
we have included the second rule which replaces S with the empty string.

The following conversion rule can be used for prefix hypotheses:

PREFIX HYPOTHESIS CONVERSION RULE

A prefix hypothesis PH(x ,x) is equivalent to the set of regular grammar
rules S x P , P x P

Inductive Logic Programming 109

The prefix hypothesis PH(x ,x) will allow placing character x before a word that
starts with the character x . The regular grammar works the other way around: it
will append the character x to a prefix string which ends in x .7 We can tell that an
intermediate string is a prefix string by examining the final token. If that token is a
prefix non-terminal symbol then the string is a prefix string and otherwise it is not.

While converting the prefix hypothesis to the regular grammar we have to distin-
guish two cases. First, the added character x can be the first character of the word.
This case has been taken care of by the first rule which replaces the starting symbol S
by x P . The symbol P makes sure that the next character of the string will be the
character x . Note that according to our second intermediate string format constraint
we can only replace P that starts with the character x .

The second possible case is that the added character x is a non-initial character of
the word. In that case we will add this character to a prefix string which contains final
symbol P . The second rule will replace this symbol by x P . Again we add P to
make sure that the next character will be x .

The third conversion rule can be used for basic word hypotheses:

BASIC WORD HYPOTHESIS CONVERSION RULE

A basic word hypothesis BWH(x ...x) is equivalent to the set of regular
grammar rules S x ...x S , P x ...x S , S e

The basic word hypothesis BWH(x ...x) defines that the string x ...x is valid. It is
not trivial to add this hypothesis to the regular grammar because of the differences in
processing between the grammar and the rule-based models. In the grammar the basic
word will be added to a prefix string. An extra suffix non-terminal needs to be added
to the string as well.

Just as with the prefix hypothesis conversion we need to distinguish between two
cases of basic word hypothesis processing when we want to convert the hypothesis to
regular grammar rules. First the basic word can be the initial part of the word we are
building. In that case no prefix rules will be used for building the word. The first rule
takes care of this case. It replaces the starting symbol S with the string x ...x S . The
suffix non-terminal S has been included in this string to allow that other characters
can be added to the string by using suffix rules. It belongs to the previous terminal
symbol x and this is in accordance with the third constraint on the format of the
intermediate strings. Since the basic word on its own is valid as well we need the
possibility to remove the non-terminal symbol S from the word. That is why the
third rule has been included here. It can be used for replacing the non-terminal symbol
with the empty string.

If the basic word is not the initial part of the word then we will add the basic word
to a prefix string. This string will contain a final prefix non-terminal symbol which
specifies that the next character needs to be x . The second rule takes care of replacing

7Actually things are a little bit more complex than this. In the regular grammar the prefix hypothesis
PH(x ,x) will be modeled by rules that add the character x in an x context and allow the next character
of the intermediate string to be x .

110 chapter 4

this symbol P by x ...x S . Again we include the non-terminal suffix symbol S
to have the possibility for adding extra suffix characters to the word. If no suffix
characters are necessary then third rule can be used for removing the symbol again.

We have presented an algorithmic method for converting a model expressed in
hypotheses to a regular grammar. The existence of such a method proves that the
behavior of our models can be simulated with regular grammars and finite state au-
tomata.

3 Experiments with Inductive Logic Programming

In this section we will describe our initial experiments with Inductive Logic Program-
ming (ILP). First we will outline the general setup of these experiments. After that we
will present the results of applying ILP to our orthographic and phonetic data. That
presentation will be followed by a description of the application of ILP to the same
data but while starting the learning process from basic phonotactic knowledge. The
section will be concluded with a discussion of the results of the experiments.

3.1 General experiment setup
We have used the three inference rules described in section 2.3 for deriving a rule-
based model for our orthographic data and a model for our phonetic data. The input
data for the learning algorithm consisted of the background knowledge rules described
in section 2.2 and observation strings which were the words in the training corpus. The
background knowledge rules contain information about the structure of words. How-
ever we have shown in section 2.2 that this information is implicitly present in HMMs
so encoding it in the background knowledge rules does not give ILP an advantage over
HMMs.

The format of the training corpora in these experiments is slightly different from
the previous two chapters. In HMMs it was necessary to add an end-of-word token
and a start-of-word token to each word. In these experiments both word boundary
tokens have been omitted. Processing the data with these tokens would also have been
possible but it would have required more complex background suffix rules and more
complex inference rules. We have chosen to keep our rules as simple as possible. Pro-
cessing data with word boundary tokens and more complex rules will lead to models
with the same explanatory power as processing data without end-of-word tokens and
simple suffix rules. The choice of dropping the word boundary tokens here has no
influence on our goal to make the three learning model experiments as comparable as
possible.

Experiments with Inductive Logic Programming 111

The ILP hypotheses inference algorithm will process the data in the following
way:

1. Convert all observations to basic word hypotheses.

2. Process all basic words, one at a time. We will use the symbol W for the
word being processed and assume that W is equal to the character sequence

1 2 1 . We will perform the following actions:

(a) If 2 1 is a valid word then derive the prefix hypothesis PH(1, 2)
and remove the basic word hypothesis for W.

(b) If 1 2 1 is a valid word then derive the suffix hypothesis SH(1,)
and remove the basic word hypothesis for W.

(c) If the prefix hypothesis PH(1, 2) exists then derive the basic word hy-
pothesis BWH(2 1) and remove the basic word hypothesis for
W.

(d) If the suffix hypothesis SH(1,) exists then derive the basic word
hypothesis BWH(1 2 1) and remove the basic word hypothesis for
W.

3. Repeat step 2 until no new hypotheses can be derived.

Steps 1, 2(a) and 2(b) are straightforward applications of the inference rules for basic
words, prefix hypotheses and suffix hypotheses which were defined in section 2.3. The
steps 2(c) and 2(d) are less intuitive applications of the background knowledge rules
for prefixes and suffixes (see section refsec-ch4-background) in combination with the
basic word inference rule. In the background knowledge suffix rule we have defined
that 1 1 will be a valid word whenever 1 1 is a valid word and a suffix
hypothesis SH(1,) exists. This is exactly the case handled by step 2(d) and
because of the fact that 1 1 is a valid word we may derive BWH(1 1)
by using the basic word inference rule. Step 2(c) can be explained in a similar way.

The steps 2(c) and 2(d) will be used to make the basic words as short as possible.
This is necessary to enable the algorithm to derive all possible prefix and suffix hy-
potheses. Consider for example the following intermediate configuration hypotheses
set:

BWH(yz)
BWH(yx)
SH(y,z)

By applying step 2(d) we can use SH(y,z) and BWH(yz) to add the basic word hy-
pothesis BWH(y) and remove BWH(yz). On its turn this new basic word hypothesis
in combination with BWH(yx) can be used for deriving the suffix hypothesis SH(y,x).
In this example shortening a basic word has helped to derive an extra suffix hypothe-
sis. We cannot guarantee that the new hypothesis will be correct. However, since we

112 chapter 4

number of hypotheses accepted rejected
basic positive negative

data type rounds word prefix suffix strings strings
orthographic 4 30 347 327 593 (98.8%) 379 (63.2%)

phonetic 3 54 383 259 593 (98.8%) 517 (86.2%)

Figure 4.4: The performance of the ILP algorithm and the models generated by this
algorithm. The ILP algorithm converts the training strings in models that contain
approximately 700 rules. The models perform well on the positive data (more than
98% was accepted) but poorly on the negative data (rejection rates of 63% and 86%).

do not have negative data available which can be used for rejecting new hypotheses
we cannot do anything else than accept all proposed hypotheses.

The ILP hypotheses inference algorithm will repeat step 2 until no more new hy-
potheses can be derived. We will call each repetition of step 2 a training round and list
the number of required training rounds in the experiment results.

3.2 Handling orthographic and phonetic data
We have used ILP to derive a rule-based model for our training data of 5577 ortho-
graphic strings. We used the hypothesis inference algorithm of the previous section
which was based on the inference rules defined in section 2.3. The background knowl-
edge consisted of the three background knowledge rules defined in section 2.2 and the
training words were used as observations. The algorithm required four training rounds
before the hypothesis set stabilized. The final model consisted of 30 basic word hy-
potheses, 347 prefix hypotheses and 327 suffix hypotheses (see figure 4.4).

The final rule-based model was submitted to the same tests as the models which
were generated in the previous chapters. It was tested by making it evaluate 600
positive test strings which were not present in the training data and 600 negative test
strings. The model performed well on the positive test data. It accepted 593 words
(98.8%) and rejected only 7: d, fjord, f ’s, q’s, schwung, t’s and z. The rule-based
model achieved a lower score on the negative test data. It was only able to reject
379 of the 600 strings (63.2%) Some examples of accepted invalid strings are bswsk,
kwrpn, ntesllt, rdtskise and ttrpl.

After having applied the ILP algorithm for orthographically encoded words we
have used it for deriving a rule-based model for our phonetic data. The algorithm
started with 5084 observations and required three training rounds before the hypothe-
sis set stabilized. The final model consisted of 54 basic word hypotheses, 383 prefix
hypotheses and 259 suffix hypotheses (see table 4.4). It performed equally well on the
correct test words as the orthographic model accepting 593 words (98.8%) and reject-
ing only 7 words: fjord [fj rt], fuut [fyt], square [skw :r], squares [skw :rs], schmink

Experiments with Inductive Logic Programming 113

S

S S S S3 4 5 6 7SS1 2S

S S8 9P B

Figure 4.5: An adapted version of the initial HMM model for orthographic data, based
on the Cairns and Feinstein model. The original model was presented in figure 2.18
of chapter 2. The model has been divided in three parts: a part P in which the prefix
rules operate, a part B generated by the basic word hypotheses and a part S in which
the suffix hypotheses work. The new states s8 and s9 are copies of s1 and s2 and take
care of the production of words that do not contain vowels.

[mi k], schminkt [mi kt] and schwung [wu]. The phonetic model performed
worse on the negative test strings but its performance was better than the performance
of the orthographic model on the negative strings. It was able to reject 517 of 600
strings (86.2%).8

3.3 Adding extra linguistic constraints
In the previous chapters we have used the phonetic model by (Cairns and Feinstein
1982) as a model for possible innate linguistic knowledge. We will use this model in
our ILP experiments as well. One problem we have to solve is the conversion of the
Cairns and Feinstein model to the ILP rule structure. For this purpose we will use our
the modified bigram HMM initialization model shown in figure 2.18 of chapter 2. This
model consists of a set of states with a limited number of links and with restrictions
on the characters that can be produced by each state. We will restructure this model
and derive some usable constraints from it.

We want to divide the model in three parts: one part in which only prefix hy-
potheses operate, one part in which only suffix hypotheses work and one part that is
generated by basic word hypotheses. This division is shown in figure 4.5: part P is
the part for the prefix hypotheses, part B is for the basic word hypotheses and part S

8When we take into account that 26 of the negative strings are reasonable (see section 4.4 in chapter 2)
then the phonetic model rejects 514 of 574 negative strings (89.5%).

114 chapter 4

is for the suffix hypotheses. Each character production by states in the parts P and S
corresponds to a set of prefix or suffix hypotheses. The states s5 and s6 have been put
in the basic word hypothesis part because s6 is able to produce vowels and we want to
produce all vowels in the basic word hypotheses.

The division of the model caused one problem. The original model contained
an exit link from state s2. This link would make it impossible to include state s2

in the prefix hypothesis part. States with exit links must be part of either the basic
word hypothesis part or the suffix hypothesis part. State s2 in figure 2.18 is on its
own capable of producing a word like t which is present in the orthographic data.
However, in our ILP rule models the use of a basic word hypothesis is obligatory
in the production of a valid word. Having an exit link in state s2 would allow word
productions that do not include the use of a basic word hypothesis.

We have solved this problem by splitting the model in two parallel finite state
automata (figure 4.5). The states s1 and s2 and their links have been copied to two new
states s8 and s9. These new states will take care of the production of words that were
produced by using the exit link from state s2. This made it possible to remove this exit
link from state s2. Since s9 has been put in the basic word hypothesis part, the words
produced by s8 and s9 will also require the application of a basic word hypothesis. The
larger automaton will produce all words that used the exit links from states other than
s2. Therefore there is no necessity for links from s9 to s3 or s4.

Dividing the model in two parts has solved the problem we had with state s2. We
can put the states s1, s2, s3 and s8 in the prefix hypothesis part because all exit links
from this group of states go to states in the basic word hypothesis part. That part will
include states s4, s5, s6 and s9. The suffix part contains only one state: s7.

The finite state automaton of figure 4.5 is equivalent to the finite state automaton
of figure 2.18 in chapter 2. However, for learning purposes there are differences be-
tween the two. Each character production in the P and the S parts can be modeled with
one prefix or one suffix hypothesis. But we cannot produce every single character in
the B part with one basic word hypothesis because basic words consists of character
sequences and we do not have the opportunity for combining basic word hypotheses
in the ILP rule model. Therefore we will use one basic word for modeling the pro-
duction of a character sequence by a group of cells. This may cause problems when
there are internal parts which repeat themselves an arbitrary number of times. The be-
havior invoked by the self-links from the states s4, s6 and s9 cannot be modeled with
the basic word hypotheses. The ILP learning process cannot generate models with
extendible basic word hypotheses and this means that the generalization capabilities
of the resulting rule models will be weaker than those of the previously used HMMs.

Now that we have changed the Cairns and Feinstein initialization model to the
structure that we are using in the chapter, we can attempt to derive usable constraints
from this model. The Cairns and Feinstein model imposes constraints on the char-
acters that can be generated by a particular state. We have defined these constraints
explicitly for our orthographic data in the B matrix in figure 2.17 of chapter 2: the
vowels a, e, i, o, u and the quote character ’ can only be generated by the states s4

and s6, the ambiguous vowel/consonant y can be generated by any state and all other

Experiments with Inductive Logic Programming 115

characters are consonants which can be generated by any state except s4. The new
states s8 and s9 are consonant states: they can generate any character except the six
characters a, e, i, o, u and ’ (in this chapter we will regard the quote character as a
vowel).

When we inspect the model with these character production constraints in mind
we can make two interesting observations. First, the prefix hypothesis states cannot
produce the characters a, e, i, o, u and ’. We will call these characters PURE VOWELS.
Since the characters produced by these states are put before a word by a prefix hy-
potheses, this means that prefix hypotheses cannot add a pure vowel prefix to a word.
Second, the suffix hypothesis state cannot produce a pure vowel. A character produced
by this state is a character appended to a word by a suffix hypothesis. This means that
suffix hypotheses cannot append a pure vowel to a word. We can summarize these two
observations in the following two rules:

PREFIX HYPOTHESIS CONSTRAINT

In a prefix hypothesis PH(I,S) the character I that is appended to a word
cannot be a pure vowel.

SUFFIX HYPOTHESIS CONSTRAINT

In a suffix hypothesis SH(P,F) the character F that is appended to a word
cannot be a pure vowel.

It is not possible to derive a similar constraint for the basic word hypotheses because
these can contain both vowels and consonants. The derivation presented here applies
only to orthographic data. In a similar fashion one can take the initial phonetic model
from figure 2.22 in chapter 2, generate an adapted model like presented in figure 4.5
and derive similar constraints for prefix and suffix hypotheses.9 Our phonetic data
contains 18 vowels.

We have repeated our ILP experiments for deriving rule-based models for our
orthographic and our phonetic data by using the prefix and the suffix hypothesis con-
straints presented in this section. Apart from these extra constraints the experiment
setups were the same as described in the previous section The resulting models were
submitted to our standard test sets of 600 correct words and 600 incorrect strings. The
results of these tests can be found in figure 4.6.

The models needed approximately the same number of training rounds to stabi-
lize as in our previous experiments. Because of the constraints on the format of the
prefix and the suffix hypotheses, the initialized models contain fewer prefix hypothe-
ses and fewer suffix hypotheses. This means that fewer words have been divided in
smaller parts and as a result of that the models contain more basic word hypotheses.
The size differences between these models and the previous ones are largest for the
orthographic data.

9An additional constraint can be derived for phonetic data: the basic word hypotheses cannot consist of
a mixture of vowels and consonants. We did not use this constraint because we expected it would cause
practical problems in the learning phase.

116 chapter 4

number of hypotheses accepted rejected
basic positive negative

data type rounds word prefix suffix strings strings
orthographic 4 128 166 178 586 (97.7%) 564 (94.0%)

phonetic 2 64 324 207 593 (98.8%) 565 (94.2%)

Figure 4.6: The performance of the ILP algorithm with the prefix and the suffix hy-
pothesis constraints and the models generated by this algorithm. The ILP algorithm
converts the training strings in models that contain fewer rules than the previous mod-
els (472 and 595 compared with approximately 700). The models perform well on the
positive test data (best rejection rate 2.3%) and a little worse on the negative test data
(rejection rates of about 6%).

The added constraints during learning make the ILP process generate better mod-
els. The orthographic model performs worse in accepting positive test data (97.7%
compared with the earlier 98.8%) but remarkedly better in rejecting negative data
(94.0% versus 63.2%). The phonetic model performs exactly as well in accepting
positive test data (98.8%) and a lot better in rejecting negative data (94.2% versus
86.2%).10

3.4 Discussion
The orthographic model derived by the ILP algorithm without constraints for ortho-
graphic data performs quite poorly in rejecting negative test strings. It has become
too weak. The fact that this model consist of a set of rules gives us the opportunity to
inspect it and find out why exactly it is making errors. This is an advantage of rule-
based models over statistical and connectionist models. In the experiments described
in the previous section we did not have the opportunity to correct models by changing
their internal structure.

The orthographic model accepts the incorrect consonant string kwrpn. The model
can use only one set of rules for proving this string: the four prefix rules PH(k,w),
PH(w,r), PH(r,p) and PH(p,n) and the basic word rule BWH(n). The first two prefix
rules are correct as we can see from the two correct Dutch words kwarts and wrakst.
The third prefix rule is wrong11 and the fourth one is a rare one for Dutch but correct.
The basic word hypothesis is strange. Like in English it is possible to say that n is the
14th character in the alphabet. However with consonants as basic words we cannot

10When we take into account that 26 of the negative strings are reasonable (see section 4.4 in chapter 2)
then the phonetic model rejects 562 of 574 negative strings (97.9%).

11Incorrect hypotheses are caused by the presence of single consonants in the training data. For example,
in combination with the word in the single consonant word n would cause the incorrect prefix hypothesis
PH(i,n) to be derived.

Experiments with Inductive Logic Programming 117

expect to be able to create a good model.
Unfortunately all single characters are present in the orthographic data: 21 in the

training corpus and 5 in the test corpus. We had expected the final basic word hypoth-
esis set to include the six Dutch vowels and a few rare vowel sequences which could
not be made smaller by the learning algorithm. This was indeed the case but apart
from that the basic word hypotheses contained 17 single consonants. Most of them
were present in the training data as complete words. We supposed that the latter fact
caused the consonants to appear in the basic hypothesis set. In order to test this we
have removed the single consonant words from the training words and performed an
extra training session. However all consonants returned as basic words in this extra
orthographic model.

We have inspected the training data to find out which words did not fit in the
simplest word model we could think of. This model assumes that every word contains
a vowel with possibly adjacent vowels and an arbitrary number of consonants in front
or behind the vowels. The following word types did not fit in this model:

1. Single character consonant words (16 items). All characters except for a, e, i,
o, u, y and ’ have been regarded as consonants. Examples of words in this class
are n and t.

2. Words with two or more vowel groups (111 items). Nearly all these words were
loan words. Examples of this class are toque en leagues

3. Multiple character words without vowels (3 items). These were the three inter-
jections which were present in our training corpus: st, sst and pst.

When we remove all three data types from the training corpus and apply the ILP learn-
ing algorithm we obtain an orthographic model with only 19 basic word hypotheses,
188 prefix rules and 198 suffix rules. This model accepts 97.6% of the complete train-
ing data, accepts 97.0% of the positive test strings and rejects 96.7% of the negative
test data. This is an improvement with respect to our orthographic experiments with-
out extra constraints. However we are looking for models which accept all training
data and thus this model is unacceptable.

The problems in the phonetic model that was generated without using constraints
are not that obvious. The model contains five single consonant basic word hypothe-
ses, 55 prefix hypotheses which append a vowel and 51 suffix hypotheses which add
a vowel to a word. The data contains the two interjections st and pst, one single con-
sonant word s but no words with more than one vowel group. When we remove these
three words from the training data and run the ILP algorithm one more time then we
obtain a model which accepts 99.9% of the training data, accepts 98.8% of the positive
test data and rejects 94.7% of the negative test data. The model contains 324 prefix
rules, 207 suffix rules and 62 base rules. Performance and model size are almost
exactly the same as for the phonetic model with linguistic initialization.

We may conclude that application of ILP to our learning task leads to a reason-
able performance. The models that are generated by the ILP algorithm without the

118 chapter 4

constraints derived from the model of Cairns and Feinstein perform worse than the
models generated while using these constraints. The problems of the earlier models
can be explained by a few problematic words. Application of ILP with the extra lin-
guistic constraints is more robust with respect to these words and thus generates better
models.

4 Alternative rule-based models

In the previous section we have described how ILP can be used for deriving rule-
based orthographic and phonetic models. In this section we will modify the internal
structure of these models. First we will create more elaborate models, that is models
which have a richer internal structure. We will show how these models can be build
by using ILP and perform some learning experiments with them. After that we will
decrease the size of the models by making the rules process character sets rather than
single characters.

4.1 Extending the model
In the previous section we have used the Cairns and Feinstein model for initializing a
rule-based model. We have seen that our ILP models do not have an internal structure
that is as rich as the Cairns and Feinstein model. The latter model divides the word
production process in seven different stages which correspond with the seven states
in the initial model. Our rule-based models only contain three different stages: one
for prefix hypotheses, one for suffix hypotheses and one for basic word hypotheses.
We have mentioned in section 3.3 that this restriction has a negative influence on the
generalization capabilities of the models.

We want to test a more elaborate rule-based model to see if it performs better
than our current three-state model. We will aim for a similar structure as the Cairns
and Feinstein model with seven states but we want to keep our concepts of prefix
hypotheses, suffix hypotheses and basic word hypotheses. Therefore we have defined
the following extended hypotheses concepts:

EXTENDED BASIC WORD HYPOTHESIS

An extended basic word hypothesis BWH(1 ,s) defines that the
string 1 can be produced in state s .
Rule notation: producible(1 ,s) BWH(1 ,s).
EXTENDED SUFFIX HYPOTHESIS

An extended suffix hypothesis SH(1, ,s) defines that when a string
1 1 can be produced in a predecessor state of state then the

string 1 1 can be produced in state .
Rule notation: producible(1 1 ,s) SH(1, ,s),

producible(1 1,),
predecessor(s ,s).

Alternative rule-based models 119

S4 S9

S81

B

S

P SS 2S

S SS 65 7

3

Figure 4.7: An adapted version of the initial HMM model for phonetic data, based on
the Cairns and Feinstein model. The original model was presented in figure 2.22 of
chapter 2. The model has been divided in three parts: a part P in which the extended
prefix hypotheses operate, a part S in which the extended suffix hypotheses work and
a part B generated by the extended basic word hypotheses. States s8 and s9 are copies
of s1 and s2 that take care of the production of words that do not contain vowels. All
states except state s3 and state s5 are final states. The connections from s4 to s3 and s2

have not been included in this diagram.

EXTENDED PREFIX HYPOTHESIS

An extended prefix hypothesis PH(1, 2,s) defines that when a string
2 can be produced in a predecessor state of state then the string
1 2 can be produced in state .

Rule notation: producible(1 2 ,s) PH(1, 2,s),
producible(2 ,),
predecessor(s ,s).

Furthermore, final state hypotheses are necessary for defining which states can be
final states since only a few states will be allowed to act as a final state. Final state
hypothesis FS(s) defines that processing may end in state s . There is no equivalent
definition necessary for the concept of initial state because these will implicitly be
defined by the basic word hypotheses. Nothing can be produced before a basic word
and processing a word can only start with processing a basic word. Therefore any state
present in an extended basic word hypothesis will automatically be an initial state.

Figure 4.7 shows an initial model that uses extended hypotheses. Like the model
shown in figure 4.5 it has been divided in three parts for the three types of hypotheses.
Note that the processing order has been changed slightly. The model will start pro-
cessing basic words, continue with working on suffix characters and finally deal with

120 chapter 4

the prefix characters. This unusual processing order was caused by our wish to ob-
tain a model that was closely related to the three hypothesis types. The more intuitive
processing order prefix characters - basic word - suffix characters was not possible
because basic words impose restrictions on prefix characters. In a string generation
model processing must start with the basic word.

Example: suppose that we want the model to produce the word bAst and we know
that the hypotheses BWH(A,s4), PH(b,A,s2), SH(A,s,s6) and SH(s,t,s7) are available.
The model would start in state s4 and produce A. After this it would continue with state
s6 (As) and state s7 (Ast). Processing would end in state s2 (bAst). The word is valid
since processing has ended in a final state and the complete word has been produced.

4.2 Deriving extended hypotheses
Deriving extended hypotheses is more difficult than deriving standard hypotheses. For
example, we cannot use the suffix inference rule of section 2.3 for deriving a suffix
hypothesis from basic word hypotheses BWH(clans) and BWH(lans) because we need
to define the state which produces the c. The basic words do not provide a clue to
which state would be correct.

We will design a method for deriving the rules based on the assumption that we
have some general initial model to start with. The task of the ILP learning process will
be to fill in the details of the model. The initial model will be a quadruple consisting of
a set of states, a set of predecessor state definitions, a set of final state definitions and a
set of character classes that can be produced by the states. An example of such a model
is shown in figure 4.7. The states and the links have been shown in the figure. The
characters that can be produced by the states are vowels for state s4 and consonants
for all other states (see also the B matrix in figure 2.21 in chapter 2).

These constraints on the production of characters leave some processing freedom.
For example, the suffix characters of our example word bAst can be produced by two
different state combinations. The s can be produced by state s5 and the t by s6. Alter-
natively the s can be produced by state s6 and the t by s7. In the Cairns and Feinstein
model for Dutch the second option is the only one that is permitted. In order to enable
the ILP algorithm to find this solution we need to supply it with extra information. An
example of such extra information could be dividing the consonants in subclasses and
putting more restrictions on the characters that the states can produce. However, we
do not want to make an extra partition in the character sets because we have not done
something like that in the experiments with HMMs and SRNs. Using a finer division
here would provide the ILP algorithm information the other two algorithms did not
have and this would make a performance comparison unfair.

We have chosen to accept both suffix generation possibilities. This means that for
generating the word bAst we would derive the following set of hypotheses:

BWH(A,s4)
PH(b,A,s2)

Alternative rule-based models 121

SH(A,s,s5)
SH(s,t,s6)
SH(A,s,s6)
SH(s,t,s7)

The derivation process of the extended hypotheses will contain the following steps:

1. Take some initial model of states, predecessor state definitions, final state defi-
nitions and producible character classes. The set of hypotheses starts empty.

2. Take a word from the training data and derive all hypotheses which can be used
for explaining the word with the initial model. Add these hypotheses to the set
of hypotheses

3. Repeat step 2 until all words in the training data have been processed.

4. The result of this ILP process is the initial model combined with the set of
hypotheses.

In this derivation process we will use modified versions of the background knowledge
rules we have defined in section 2.2 for prefix hypotheses, suffix hypotheses and basic
words. We also need final state definitions, predecessor state definitions and a validity
definition. Furthermore we will apply an extended hypothesis inference rule which
will replace the three inference rules we have defined in section 2.3.

EXTENDED BACKGROUND KNOWLEDGE BASIC WORD RULE

The existence of a basic word hypothesis BWH(1 ,s) implies that
string 1 can be produced by state s .
Rule notation: producible(1 ,s) BWH(1 ,s)
EXTENDED BACKGROUND KNOWLEDGE SUFFIX RULE

Suppose there exists a suffix hypothesis SH(1, ,s).
In that case the fact that string 1 1 can be produced in a predeces-
sor of state s implies that 1 1 can be produced in s .
Rule notation: producible(1 1 ,s) SH(1, ,s),

producible(1 1,s),
predecessor(s ,s)

EXTENDED BACKGROUND KNOWLEDGE PREFIX RULE

Suppose there exists a prefix hypothesis PH(1, 2,s).
In that case the fact that 2 can be produced in a predecessor of state
s implies that 1 2 can be produced in state s .12

Rule notation: producible(1 2 ,s) PH(1, 2,s),
producible(2 ,s),
predecessor(s ,s)

12Because of the processing order shown in figure 4.7 prefix character states can have predecessor states.

122 chapter 4

FINAL STATE DEFINITION

The existence of a final state definition finalState(s) implies that state s
is a final state and vice versa.
PREDECESSOR STATE DEFINITION

The existence of a predecessor definition predecessor(s ,s) implies that
state s is a predecessor of state s and vice versa.
VALIDITY DEFINITION

A string is valid according to a model consisting of a set of states, a set of
predecessor state definitions, a set of final state definitions, a set of char-
acter classes produced by the states and a set of hypotheses if and only if
the string can be produced in one of the final states of the model.
EXTENDED HYPOTHESIS INFERENCE RULE

Any ground prefix hypothesis, suffix hypothesis and basic word hypoth-
esis that can be used for proving that a string in the training data is valid
according to the initial model should be derived.

The extended hypothesis inference rule derives sets of hypotheses when they can be
used for producing a string in the model. It is difficult to capture this in the rule
notation and therefore no rules have been included in the definition of this inference
rule.

4.3 Experiments with the extended model
We have used ILP for deriving models for our orthographic data and our phonetic
data. For each data type we have performed two experiments: one that started from
a random model and one that started from a linguistic model derived from the Cairns
and Feinstein model. The linguistic model for phonetic data can be found in figure
4.7. The linguistic model for orthographic data is similar to the model shown in figure
4.5 but this model has the same processing order as the phonetic model: first prefix
hypothesis states, then suffix hypotheses states and finally the basic word hypothesis
states. In the initial orthographic model the states s4, s5 and s6 have been combined
into one state which is capable of producing multicharacter strings.

Just like in the previous experiments we wanted to compare initialized extended
models with non-initialized extended models in order to be able to measure the influ-
ence of the initialization. Constructing the initial models for the two non-initialized
experiments was a non-trivial task. We wanted the models to contain some random ini-
tialization like the random initialization models we have used for HMMs and SRNs.
However, our extended rule-based models do not contain numeric values which we
can initialize with arbitrary values. We have decided to use open models as starting
models. Open models are models without the restrictions imposed on the linguisti-
cally initialized model. In these models the prefix hypotheses, suffix hypotheses and
basic word hypotheses may use any state, states may produce any character and all
states are connected with each other.

Alternative rule-based models 123

number of hypotheses accepted rejected
basic positive negative

data type initialization word prefix suffix strings strings
orthographic random 27 376 376 595 (99.2%) 360 (60.0%)

phonetic random 41 577 577 595 (99.2%) 408 (68.0%)
orthographic linguistic 116 273 190 587 (97.8%) 586 (97.7%)

phonetic linguistic 20 528 450 595 (99.2%) 567 (94.5%)

Figure 4.8: The performance of the ILP algorithm for the extended models described
in this section. The models with a random initialization perform worse than the stan-
dard models when it comes to rejecting negative data (average rejection score 64%
compared with 75%). The extended initialized models perform slightly better than the
standard initialized models (compare with figure 4.5).

In our ILP experiments we want to derive any hypothesis that can be used for
explaining a string. In a fully connected open model there will be many different
possible explanations for words. All the processing paths found by the ILP algorithm
will be equivalent. It does not matter if a path contains the state sequence s1-s2-s3-s4

or s1-s1-s1-s1 because all states will be linked to the same states and produce the same
characters and after training and there will be a duplicate of every hypothesis for every
state. For that reason an open model with one state will have the same explanatory
power as an open model with more states. We want our initial model to be as simple as
possible and therefore we have limited the number of states in the open initial models
to one.

The 5577 orthographic training words and the 5084 phonetic words have been sup-
plied to the ILP algorithm. From this data the algorithm derived extended hypotheses
defined in section 4.1 by using as background knowledge three background hypothesis
rules, three definitions and the extended hypothesis inference rule which were defined
in section 4.2. One training round was sufficient in each experiment because all possi-
ble hypotheses for one word could be derived by considering the word independently
of other words or other hypotheses. The results of the experiments can be found in
figure 4.8.

The models which were built by starting from an open initialized model performed
poorly with respect to rejecting negative strings. The extended orthographic model
rejected only 360 negative test strings (60.0%). This performance is even worse than
that of the standard non-initialized orthographic model (63.2%). The phonetic model
performs slightly better by rejecting 408 negative strings (68.0%).13 However this is
a lot worse than our standard phonetic model which rejected 517 negative test strings
(86.2%).

13When we remove the 26 plausible strings from the negative phonetic data (see section 4.4 of chapter 2)
then the extended random model has rejected 405 of 574 strings (70.6%).

124 chapter 4

The poor performance of these models can be explained by the fact that the current
learning experiments are lacking an important implicit constraint that was present in
the previous experiments. In our earlier experiments we have only derived a prefix
hypothesis when it could be used for explaining one existing word with another one.
In these experiments we derive any prefix hypothesis that can be used for explaining a
word regardless of the other words. The same is true for suffix hypotheses. When we
use an open model as initial model then this derivation strategy will result in models
that accept all possible substrings of the training words. For example, the word bak
will not only lead to the correct derivation of PH(b,a,s1), BWH(a,s1) and SH(a,k,s1)
but also to the incorrect cluster PH(b,a,s1), PH(a,k,s1) and BWH(k,s1) and the incor-
rect cluster BWH(b,s1), SH(b,a,s1) and SH(a,k,s1). Thus each single token will be a
basic word and there will be many prefix hypotheses and many suffix hypotheses. The
resulting models are too weak. They accept too many strings.

The models that were built starting from the linguistically initialized model per-
form much better when it comes to rejecting strings of the negative test data. The
orthographic model rejects 586 strings (97.7%) while the phonetic model rejects 567
strings (94.5%). The latter model performs as well as the previous initialized pho-
netic model (94.2%)14 and the orthographic model achieves a higher score than before
(94.0%, see figure 4.6). The current models perform slightly better when it comes
to accepting positive test data. The orthographic model accepts 587 correct words
(97.8%) compared with the earlier 586 words (97.7%). The phonetic model accepts
595 words (99.2%) while the earlier figure was 593 words (98.8%).

In this section we have applied the ILP algorithm to our learning problems with
as a goal deriving more elaborate target models. However, the linguistically initial-
ized models after training achieve approximately the same performance as the earlier
models. Extending the models does not seem to have achieved much.

4.4 Compressing the models
The models built by ILP while starting from a linguistically initialized model per-
form reasonably well. However, the models are quite large. The number of rules per
model varies from 472 for the standard orthographic model (figure 4.6) to 998 for the
extended phonetic model (figure 4.8). We would like to decrease the size of these
models because smaller models are easier to understand and easier to work with.

One of the main reasons for the models being this big is that they contain separate
rules for every character. For example, the orthographic models contain seven separate
rules for defining that the seven vowel characters can appear in a basic word hypothesis
on their own. We would like to encode information like this in one rule.

The number of rules can be decreased by dividing the characters into character
classes. The character class boundaries could have been determined by the phonetic
features of the characters. We do not want to use these features because we did not

14Without the 26 plausible strings from the negative phonetic data the extended initialized model would
have rejected 564 of 574 strings (98.3%).

Alternative rule-based models 125

48.0 a e
46.0 a e o
44.0 a e i o
42.0 a e i o u
42.0 l r
41.0 s t
38.4 c k l m n p r s t

Figure 4.9: The result of the clustering process for orthographic data: the top 25% of
the token groups that frequently appear in the same context. The scores indicate how
often the tokens occurred in the same context: a score of 40.0 means that on average
the tokens occurred together in 40 rules with the same context. In total there were 140
rule contexts and 26 clusters.

use them in our earlier experiments with statistical learning and connectionist learn-
ing. Instead we will use data-unspecific clustering algorithms for dividing tokens into
token clusters (Finch 1993). Our modified rules will specify that a character class is
possible in a character class context rather than specifying that a single character is
possible in some context. Working with character classes will create the possibility to
cover gaps that are present in the rule set and create models that generalize better.

We have applied a clustering algorithm to the rules we have obtained in the previ-
ous section. The clustering algorithm computed the frequencies of the occurrences of
tokens in similar rule contexts. For example, the orthographic prefix rule PH(?,h,s1)
states which characters can be placed before an h in state s1. According to our ex-
tended orthographic model, the question mark in the rule can be replaced by one of
five possible tokens: c, k, s, t and w. We will assume that the fact that these charac-
ters can occur in the same context means that they are somehow related to each other.
The clustering process will count the number of times that tokens occur in the same
context and output lists of tokens which frequently appear in similar contexts.

Example: Among the extended prefix hypotheses for the orthographic data pro-
duced by our ILP algorithm with linguistic initialization we have the two hypotheses
PH(v,l,s2) and PH(v,r,s2). They state that we can put a v before an l and an r in state
s2. So the l and the r occur in the same context: behind a v that is added in state s2.
This means that we can put the two characters in one cluster.

We cannot use all clusters that the algorithm produces. One cluster that is not very
useful is the largest possible cluster which contains all tokens. We have chosen to work
only with the top 25% of the clusters (a motivation for the size of the chosen cluster
group will be given later). The clustering algorithm assigned scores to the clusters
which indicate how close together the elements of the clusters are. These scores have
been used to define which clusters are best.

The top 25% of the clusters for the orthographic data can be found in figure 4.9.
The clustering process grouped the vowels together and created three probable con-

126 chapter 4

82.0 l r
75.0 p t
75.0 n l r
73.0 k p t
70.4 y/ i: o: u: E A O I a: e: U
69.7 k p t x
69.3 i: o: u: E A O I
68.0 n l r m
64.5 k p t x n l r m
60.0 s k p t x n l r m

Figure 4.10: The result of the clustering process for phonetic data: the top 25% of
the token groups that frequently appear in the same context. The scores indicate how
often the tokens occurred in the same context: a score of 60.0 means that on average
the tokens occurred together in 60 rules with the same context. In total there were 220
rule contexts and 40 clusters.

sonant groups. The seven character groups presented here were used to decrease the
number of rules for the orthographic data. All rules which contained 75% of more of
the characters of a cluster were modified. The original characters were removed from
the rules and replaced with a special token which represented the complete cluster.

Example: With a cluster that contains the characters l and r we can replace the
two prefix hypotheses PH(v,l,s1) and PH(v,r,s1) by one hypothesis: PH(v,cluster ,s1).
Here cluster is the name for the cluster containing l and r. This replacement will
only be made if there is no larger cluster available. For example, would it have
been possible to have the characters of the cluster cklmnprst in place of the ques-
tion mark in PH(v,?,1) then we would have replaced the nine prefix hypotheses with
PH(v,cluster ,s1). The presence of 75% cluster tokens in a rule context is
enough for replacement. This means that even if only seven characters of the cluster
are possible in the example context, the seven hypotheses will be replaced. By putting
the threshold at 75% rather than 100% we were able to deploy the clustering algorithm
to cover gaps in the rule set that resulted from the training data.

We have applied the clustering algorithm to the models with extended hypotheses
produced by the ILP algorithm that started with linguistic information. The derivation
of these models was discussed in section 4.3 and the performance data for the models
can be found in figure 4.8. We did not apply the clustering algorithm to the non-
initialized models. These models performed poorly and modifying them by dividing
the tokens in groups would make performance even worse. Clustering will implicitly
add rules and thus make the models accept more strings. Non-initialized models al-
ready accepted to many negative test strings and we are not interested in models that
accept even more strings.

The results of the clustering process can be found in figure 4.11. The number

Alternative rule-based models 127

number of hypotheses accepted rejected
basic positive negative

data type initialization word prefix suffix strings strings
orthographic linguistic 106 103 83 590 (98.3%) 585 (97.5%)

phonetic linguistic 10 143 131 595 (99.2%) 560 (93.3%)

Figure 4.11: The performance of the ILP algorithm for the extended models with lin-
guistic initialization after clustering. By grouping the characters in character classes
the number of rules in the orthographic model has decreased with 50% and the num-
ber of rules in the phonetic model has decreased with 70%. The performance of the
models is approximately the same as the original models presented in figure 4.7.

of rules in the orthographic model decreased by approximately 50% compared with
the model presented in figure 4.8 from 579 to 292 hypotheses (excluding 5 cluster
definitions).15 Compared with the original model the model accepted three extra
strings of the positive test data and one more string of the negative test data. Clus-
tering had a greater influence on the phonetic model (the applied phonetic clusters can
be found in figure 4.10). The number of hypotheses decreased by more than 70% from
998 to 284 (excluding 7 cluster definitions). This model accepted seven more negative
test strings than the original model.16 The size of accepted positive test data was the
same.

The clustering process contains two parameters for which we have chosen rather
arbitrary values. The first parameter is the percentage of used clusters. We chose to
use the best 25% of the clusters. By increasing this percentage we would obtain more
clusters and generate models with fewer hypotheses. However, the chance that the set
of clusters includes nonsensical clusters will increase. Models which use nonsensical
clusters might accept too many negative strings.

The second parameter is the acceptance threshold. Whenever 75% or more tokens
of a cluster are allowed in a certain context then we will assume that all tokens of
that cluster are allowed in that context. By increasing this value we can apply the
clusters at more places and thus decrease the number of hypotheses. However, the
extra generalizations that will be generated as a result of this might be wrong. We
can also increase the acceptance threshold but that will result in fewer application
possibilities and larger models.

We would have liked to decrease the phonotactic models with another 50% to
models of approximately 150 hypotheses. However, we feel that modification the

15We have used seven clusters but we only needed five cluster rules because some clusters contained 75%
of the characters of larger clusters. These subset clusters were automatically replaced by the larger clusters.
They did not need to be defined because it was impossible for them to appear in the final models.

16When we remove the 26 plausible strings from the negative phonetic data then this model has rejected
558 of 574 strings (97.2%).

128 chapter 4

two clustering process parameters will decrease the performances of the models that
will be generated. Therefore we have tried something else. We have added two extra
clusters to the models: one containing the vowels as defined in the initial linguistic
model and one containing the consonants of the same model. These two clusters were
already part of our original linguistic initialization.

With the two extra clusters the orthographic model decreased to 241 hypotheses
excluding 6 cluster definitions (-17%). Now the model accepted 594 positive test
strings (99.0%) and rejected 580 negative strings (96.7%). The size of the new pho-
netic model was 220 hypotheses excluding 9 cluster definitions (-23%). It accepted
596 strings of the positive data (99.3%) and rejected 560 strings of the negative data
(93.3%).17 The performance of the phonetic model is almost the same as the perfor-
mance of the previous phonetic model. The new orthographic model accepts more
positive test strings but it also accepts more negative strings.

In this section we have used a clustering method for decreasing the size of the
rule-based models we have obtained in the previous section. The clustering method
was successful: the number of rules decreased at best with 58% for the orthographic
model and 78% for the phonetic model. However, the number of rules in these models,
241 orthographic rules and 220 phonetic rules, is still quite large.

5 Concluding Remarks

We have started this chapter with an introduction to rule-based learning. We have ex-
plained that neither lazy learning nor decision trees are useful for our learning problem
because we want to work with positive examples only. These two learning methods
require both positive and negative learning input. We have chosen the learning method
Inductive Logic Programming (ILP) for our experiments. An important constraint on
ILP is that it should not contain information that was not available in our previous
learning experiments. A violation of this constraint would make a comparison of the
ILP results with the results we have obtained in the previous chapters unfair.

We have designed an ILP process which was capable of handling our orthographic
and phonetic data. We performed two variants of the learning experiments: one that
started without knowledge and one that was supplied with initial knowledge which
was extracted from the syllable model by Cairns and Feinstein (Cairns and Feinstein
1982). The non-initialized process produced models which performed well in recog-
nizing correct words but they performed poorly in rejecting negative test strings (see
figure 4.4). The linguistically initialized process generated models that performed
well in both cases (see figure 4.6).

After these experiments we have developed rule-based models with a richer inter-
nal structure. We wanted to know whether these extended models would be able to
perform better than our previous rule-based models. However, we found only a small

17Again a removal of the 26 plausible strings from the negative phonetic data led to a rejection rate of
97.2% for this data set.

Concluding Remarks 129

performance increase. The best-performing extended models, the initialized extended
models, achieved results that were only a little better than the ones of the previous
initialized models (see figure 4.8).

We have tried to decrease the size of the extended model in an attempt to obtain
models which would be easier to work with for humans. By applying a clustering
algorithm we were able to decrease the model size with more than 50% with almost
no performance decrease (see figure 4.11). However with rule sets containing between
200 and 250 rules, these models are still quite large.

From the results of the experiments described in this chapter we may conclude that
Inductive Logic Programming (ILP) is a good learning method for building monosyl-
labic phonotactic models. ILP with linguistic initialization generates models that per-
form much better than the models that were generated without initial knowledge. The
results of section 4.3 show that the number of processing stages in the models (equal
to the number of states) does not seem to have a large influence on their performance.
There is room for optimization in the models generated by ILP since the number of
rules that they contain could be decreased with more than 50% without a performance
degradation. A clear advantage of the models produced by ILP is that their internal
structure can be inspected and improved if necessary.

