Chapter 5

Concluding remarks

This chapter will start with a section that summarizes and compares the results of
the experiments described in the earlier chapters of this thesis. After that we will
describe studies performed by othersthat were inspired by our work. The chapter will
be concluded with a section that presents the research tasks that we see as a possible
follow-up on thisthesis.

1 Experiment results

In this thesis we have described the application of machine learning techniquesto the
problem of discovering a phonotactic model for Dutch monosyllabic words. We have
performed experiments with three learning algorithms, two data representation meth-
ods and two initialization schemes. The learning algorithms have only been provided
with positive training data. Our goals were to find out which of the learning methods
would perform best and to find out what data representation and what initialization
scheme would enable the learning process to generate the most optima model. The
results of the experiments have been summarized in figure 5.1.

The first learning method we have examined was the statistical learning method
Hidden Markov Model (HMM). We have used bigram HMMs which consider two
characters at a time during the string evaluation process because regarding a context
of one character is necessary for building a good phonotactic model. This learning
method has produced good phonotactic models: after training the HMMs would ac-
cept around 99% of unseen positive test data and reject between 91 and 99% of the
negative test data. There was only a small difference between training with random
and initialized models but the models performed better with phonetic than with ortho-
graphic data. One observed difference was that the training process of linguistically
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orthographic data

random initialization

linguistic initialization

learning % accepted % rejected % accepted % rejected
algorithm positivedata | negativedata | positivedata | negative data
HMM 98.9 91.0 98.9 94.5
SRN 100 8.3 100 4.8

ILP 99.2 60.0 97.8 97.7

phonetic data

random initialization

linguistic initialization

learning % accepted % rejected % accepted % rejected
algorithm positivedata | negativedata | positivedata | negative data
HMM 99.1 98.3 99.1 99.1

ILP 99.2 70.6 99.2 98.3

Figure 5.1: The results of our experiments with generating phonotactic models for
Dutch monosyllabic words. The experiments included three learning a gorithms, two
initialization configurations and two data representations. No experiments have been
performed with SRNs for the phonetic data representation because of the discour-
aging SRN results for the orthographic data representation. The HMM results for
orthographic data with linguistic initialization come from the modified initialization
(figure 2.19). The ILP results have been obtained with extended models (figure 4.8).
The rejection scores for the negative phonetic data have been computed for the set of
574 incorrect phonetic strings.

initialized HMM s required significantly less time than that of the ones with arandom
initialization.

The connectionist method Simple Recurrent Network (SRN) was the second me-
thod that we have tested. This method performed surprisingly worse than the perfect
results reported in (Cleeremans 1993). SRNSs produced phonotactic models that ac-
cepted all unseen positive test data. However, none of the SRN models has been able
to reject more than 8.3% of the negative test data. We have been able to show that the
poor performance was caused by the large complexity of our training data. Characters
in the data of Cleeremans et al. could be followed by at most two different characters
while charactersin our data can be followed by up to twenty characters. For the pho-
netic data this differenceis even larger. Therefore we have refrained from performing
SRN experiments with phonetic data.

The third learning method that we have looked at was the rule-based learning
algorithm Inductive Logic Programming (ILP). This algorithm has generated good
phonotactic models with linguistic initialization but the models generated with ran-
dom initialization had problems with rejecting negative test strings. The large score
difference for rejecting negative strings (on average 98% versus 65%) indicates that
training with linguistic initialization enables this learning method to produce better
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models than training without this basic knowledge. We have performed two extra ex-
periment groups with more elaborate rule formats and with rule set compression but
these have not led to large performance differences.

It is easier to determine which of the learning methods has generated the worst
phonotactic models than to point at a single method that has done best. The perfor-
mance of the SRN models was much worse than the models generated by the other
two methods because they failed to reject many negativetest strings. HMMsgenerated
better modelsthan ILP in training processes without linguistic initialization. However
when the algorithms were equipped with basic linguistic knowledge they would gen-
erate models which performed equally well. When it comes to choosing one of the
learning methods for future studies, we would recommend using I L P for three reasons.
First because ILP is capable of generating good phonotactic models when equipped
with initial linguistic knowledge. Second because it, unlike HMMs, generates models
that consist of rules which can be inspected and understood by humans. And third
because the algorithm trained faster than its closest rival HMMs.

An inspection of figure 5.1 will reveal the answer to the question which data rep-
resentation format, orthographic or phonetic, has suited the learning processes best.
When we compare the results of the experiments with HMMs and ILP we see that in
all cases the scoresfor the phonetic experiments are as | east as good or better than the
scores for the corresponding orthographic experiments. Although thisis not a proof,
itisanindication that it has been easier for the learning algorithms to discover regu-
larities in the phonetic data than in the orthographic data. Thisresult has surprised us.
The larger number of different characters in the phonetic data and the larger entropy
of thisdata had led us to the expectation that it would be more difficult to build agood
model for the phonetic data than for the orthographic data.

The answer to the question whether starting the learning process from an initial
linguistic model would enable the generation of better phonotactic models can also be
found by inspecting figure5.1. IntheHMM and IL Presultsthe scores of theinitialized
experiments are as least as good as the noninitialized experimentsin all but one case
(ILP: accepted positive orthographic test data).> The differenceis largest for the ILP
rejection rate of negative test data. Thisis an indication that initial basic linguistic
knowledge will help learning algorithms to generate better phonotactic models. In
the HMM experiments initial linguistic knowledge also sped up the training process.
These results have been in accordance with what we had expected.

So HMMs and ILP have generated good phonotactic models but the SRN models
performed poorly We favor ILP over HMMs because ILP trains faster and generates
models which are understandable for humans. The results of our experimentsindicate
that representing the data in phonetic format and having access to basic linguistic
information ables the learning processes to generate better phonotactic models.

1This exception may have been caused by aless suitable initial orthographic model.
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2 Recent related work

The publication in (Tjong Kim Sang 1995) of the research results mentioned in chap-
ter three of thisthesis has led to follow-up research by others. In this section we will
discuss work by Stoianov and Nerbonne with Simple Recurrent Networks (SRNs),
work by Boumawith SRNs and Synchronous-Network Acceptors and work by Klun-
gel with genetic algorithms.

(Stoianov et al. 1998) discussesaseriesof experimentsinwhich SRNsweretrained
and tested on building phonotactic models for orthographically represented monosy!-
labic and multisyllabic Dutch words. With a different data set than ours, the authors
have achieved an SRN performance that is better than any of the learning methods
tested in thisthesis: atotal error of 1.1% on accepting positive monosyllabic test data
and rejecting negative data. The results were obtained in a sequence of three experi-
ment set-ups in which each set-up improved the performance of the previous one.

In the third experiment set-up the authors changed their word evaluation routine
from a function similar to the Cleeremans measure (our measure 1 from section 3.1
of chapter 3) to an evaluation routine in which the word score was equal to the prod-
uct of the character scores. This decreased the error rate of the SRN from approx-
imately 3.5% to 1.1%. In our experiments the word evaluation measure used by
(Cleeremans 1993) performed worst. We have suspected that the Cleeremans mea-
sure can be improved and this new result provides more empirical support for that
suspicion.

In the second experiment group the authors switched from a stand-alone SRN
training process to a parallel competitive training process. In this training process
the networks are tested at different time points and networks that perform poorly are
replaced. Thistechnique is borrowed from the genetics algorithms field and was sug-
gested by Marc Lankhorst (Lankhorst 1996). It helps the training process to get out
of local minimaand increases the possibility of finding an SRN that performswell. A
disadvantage of this approach is that it requires supplying the network with negative
information during the training process. This method was explicitly excluded in our
learning experiments.

Using the competitive training process enabled the SRNs to go down from a total
error rate of 7.5% to 3.5% on monosyllabic data. The set-up of experimentsin thefirst
group, which reached the 7.5% error rate, comes closest to our own experiment set-up.
However there are three important differences between this first group and our own
experiments. Thefirst differenceisthat (Stoianov et a. 1998) haveimplicitly dropped
our constraint that all training data has to be accepted. The error rate was obtained
by choosing a word acceptance threshold which accepted as many positive data as
possible while rejecting as many negative data as possible. We have experimented
with this approach and reached an error rate of 16.3% at best (chapter 3, figure 3.16,
SRNSs, measure 3, 90%). Again the consequence of this approach is that to obtain the
best threshold one has to make the network eval uate negative data.

The second difference between this group of experiments and our experiments
was that the training data was weighted by frequency. Frequent words occurred more
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often in the training data. The number of times that a word appeared in the train-
ing data was equal to the logarithm of its frequency observed in a big text corpus.
(Bouma 1997) has shown that incorporating frequency information in the training data
will help SRNs to generate better phonotactic models.

The third difference was that negative data that was close to positive data was
removed from the test data set. For the data evaluation the authors used the string
distance function Levenshtein distance. The only strings that were allowed in the
negative data set were strings that differed in two or more characters from any word
in the positive data set. This restriction will simplify the task of the networks but we
do not know how large the influence will be on the performance.

Stoianov and Nerbonne have provided empirical evidence for the fact that SRNs
can be used as phonotactic models for Dutch. Thisis not something which we want to
dispute. We have taken the same position as (Cleeremans 1993): we were interested
in finding out whether SRNs can learn agood representation for the phonotactic data.
The authors have shown that this question should be answered with yes. However, the
guestion whether SRNs are able to build good phonotactic models from positive data
only, remains unanswered.

(Bouma 1997) presents a study in which SRNs and Synchronous-Network A ccep-
tors (Drossaers 1995) have been used for generating phonotactic models for Dutch
monosyllabic words. In the SRN experiments he used similar techniques as Stoianov
and Nerbonne in their initial group of experiments: including frequency information
and dropping the constraint that all training data must be accepted. No limitations
were put on the negative data but the positive data was restricted to the top 67% of a
frequency ordered word list. With this approach Bouma’'s SRN obtained a combined
error of 10.2% at best.? In his experiments SRNs that worked with data in which fre-
guency information was incorporated performed better (at best an error rate of 10.2%)
than SRNs that were trained with data without such information (at best 15.3%).

A Synchronous-Network Acceptor (SNA) is a biologically-plausible self-organi-
zing neural network developed by Marc Drossaers (Drossaers 1995). It can be con-
sidered as atwo-layer feed-forward network with links between the cellsin the output
layer. SNAs use two different variants of Hebbian learning during the training pro-
cess. Bouma has performed three experiments with SNAS: one with orthographic data
and two with phonetic data. This data did not contained frequency information. The
experiment with orthographic data was a success: the SNA achieved a combined er-
ror rate of 2.1%. The experiments with phonetic data generated results which were
worse: an error rate of 3.8% for locally encoded dataand 28.1% for data encoded with
phonetic features.

The results of the experiments of Bouma show that there are neura networks
which can acquire good phonotactic models for Dutch monosyllabic words with pos-
itive training data only. It came as a surprise to us that in these experiments phonetic

2The best result was obtained with a threshold value which was determined by examining the perfor-
mance of the SRNs on the test data. We feel that the test data should not be taken in consideration when
determining the evaluation measure.
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training data resulted in a worse performance than orthographic data. The 28.1% can
probably be improved by using a different phonetic feature encoding. Bouma's re-
sults for his orthographic data set, which differs from ours, are better than the results
obtained in any of our orthographic experiments.

(Klungel 1997) describes a series of experiments with genetic agorithms which
generate models for the phonotactic structure of Dutch monosyllabic words. These
experiments have been inspired by work on generating finite state automatons with
genetic agorithms by Pierre Dupont (Dupont 1994). Klungel has used finite state
models as phonotactic models which he has represented as so-called chromosomesin
the genetic algorithms. In each experiment 30 models were submitted to a continuous
modification process in an environment in which the best ones had the largest chance
to survive. The genetic algorithm had accessto positive and negative phonotactic data.

Klungel has performed experiments with two evolution methods and three fithess
functions. The evolution method Individual Replacement performed best. Of thethree
fitness functions the lowest error rate was obtained with the one that used the average
of the accepted positive data and rejected negative data as a model evaluation score
(combined error rate of 8.5%). However this function did not generate models which
performed consistently in the later phase of the training process.

The experiments performed by Klungel show that it possible to generate reason-
able phonotactic models with genetic algorithms. We believe that even better results
are possible with different genetic operators and a different initialization phase. How-
ever improving the operators and the initialization phase for thislearning problemisa
nontrivial task. One can imagine that they would benefit from having access to basic
linguistic knowledge. A disadvantage of genetic algorithmsisthat it seems necessary
to supply this learning method with negative data during training.

3 Futurework

The work presented in this thesis and the studies discussed in the previous section
have |eft some questions unanswered. These can be dealt with by performing follow-
up research. This section will discuss possible directions for such research.

In section 2.3 of chapter 1 we have attempted to compute the complexity of our
data set in order to predict the difficulty of our learning problems. We have taken
alook at data entropy and the Chomsky grammar hierarchy in order to achieve that
goa. Neither of the two methods was able to give an unambiguous answer to the
guestion whether the orthographic data set or the phonetic data set was more compl ex.
We would be interested in finding data complexity measures which are better suited
for predicting the difficulty of learning problems. One of the measures that could be
suitable is the Kolmogorov complexity used in (Adriaans 1992).

The work of Mark Ellison (Ellison 1992) has been discussed in section 3.1 of
chapter 1. Ellison has put five constraints on his learning algorithms. Of our learning
methods Inductive Logic Programming (I1LP) comes closest to Ellison’s god: it satis-
fiesfour of the five constraints. The first constraint, learning algorithms should work
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inisolation, is not satisfied because we have trained 1L P with monosyllabic data. This
can be fixed by using multisyllable words as training and test data for ILP.

The experiments in this thesis have been performed with monosyllabic words
rather than multisyllabic data in order to keep down the complexity of the learning
problem. Now that we have shown that machine learning techniques can generate
good phonotactic modelsfor monosyllabic data, the next logical step istotest them on
multisyllabic data. Others have already shown that some machine learning techniques
can generate good phonotactic models for multisyllabic data (Stoianov et al. 1998). It
would be interesting to apply other learning methods to this type of dataaswell.

Our work with Simple Recurrent Networks (SRNS) has generated alarge response.
Thepoor SRN performancereported by us hasinspired many othersto suggest and test
modifications of the learning algorithm and the experiment set-up. One of the modi-
fications that was suggested was incorporating information about the frequency of the
words in the training data (Stoianov et a. 1998) (Bouma 1997). The experiments per-
formed with frequency based training data have resulted in better phonotactic models
than our experiments did. These results have been obtained with SRNs. We would be
interested in finding out whether Hidden Markov Model s could benefit from frequency
information in the training data as well.

The SRN experiments by Stoianov, Nerbonne and Bouma have used negative data
for determining optimal network acceptance threshold values. We suspect that these
threshold values will aso reject part of the training data (see figure 3.16 in chapter
3). Thisraisestwo interesting questions. First one could ask if every SRN experiment
would benefit from disregarding part of the training data after the training phase. In
other words: Can we improve the performance of SRNs on the test data by determin-
ing the acceptance threshold values from the best X% (z < 100) of the training data
after training rather than from all training data? Our own experiments suggest that this
x value would be around 90%. This leads us to the second question: Would such a
cut-off value be the same for al SRN experiments? Finding a universal cut-off value
would enable us to determine SRN acceptance threshold values by using training data
only and relieve us from having to use negative data.

We would like to see other machine learning techniques applied to our data. One
group of techniques which seems useful are the memory-based lazy learning algo-
rithms used in the work of Walter Daelemans and Antal van den Bosch. The re-
sults reported for these learning techniques applied to phonological and morpholog-
ical problems have been better than for decision trees and the connectionist method
backpropagation (Van den Bosch et al. 1996). However, these learning methods re-
quire both positive and negative training examples. Perhapsit is possible to construct
a clever problem representation for getting around this requirement.

In studies that follow-up our work there are two issues that should be taken care
of. In thefirst section of this chapter we have compared the results of our learning ex-
periments. We have been unabl e to give exact answers to our three research questions
because the lack of statistical data. Most of our experiments have resulted in single
test scores. It would have been better if they had generated average test scores with
standard deviations. This would have made possible comparison statements which



138  chapter 5

were supported with significance information.

Obtaining statistical data for experiment results requires repeating experiments
several times. This might not always be useful. For example, performing our ILP
experiments one more time with the same datawould |ead to the same results because
our ILP training method is deterministic and uses a static initialization. Here we need
an experiment set-up called 10-fold cross validation used in the work of Daelemans
and others and originally suggested by (Weiss et al. 1991). In this experiment set-up
the positive data is divided in ten parts and the training and test phase are performed
ten times while each time a different data part is excluded from the training data and
used as test data. We suggest that future experiments with our data be performed in
this way to enable a statistically based comparison of the different experiments.

A second issue that should be taken care of in future experiments is consistent
usage of the same data sets. In our work we have used the same training and test data
for the experiments with the three learning methods. However (Stoianov et al. 1998)
and (Bouma 1997) have used different data sets and this makes comparison of their
resultswith ours difficult. In order to prevent thisfrom happening in the future we will
make our data sets universally accessible so that future experiments can be performed
with the same data.®

Future work in applying machine learning techniques to natural language will
not be restricted to generating phonotactic models for monosyllabic or multisyllabic
words. One goal of our work has been to show that these techniques can be applied
successfully to asmall section of this domain. We hope that thisthesiswill providein-
spiration for othersto continue with new applications of machine learning techniques
in larger parts of the natural language domain.

30ur data sets can be found on http://stp.ling.uu.se/erikt/mip/



