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Abstract

We examine methods for improving models for automatically
labeling social media data. In particular we evaluate active
learning: a method for selecting candidate training data whose
labeling the classification model would benefit most of. We
show that this approach requires careful experiment design,
when it is combined with language modeling.

Index Terms: machine learning, active learning, social media
data, political science, fastText

1. Introduction

Social media, and in particular Twitter, are important platforms
for politicians to communicate with media and citizens [1]. In
order to study the behavior of politicians on Twitter, we have
labeled tens of thousands political tweets written in four lan-
guages (Dutch, English, Swedish and Italian) with respect to
several categories, like function and topic. Labeling tweets is a
time-consuming manual process which requires training of the
human annotators. We would like to minimize the effort put in
labeling future data and therefore we are looking for automatic
methods for classifying tweets based on our annotated data sets.

The task of automatically assigning class labels to tweets
is a variant of document classification. This is a well-known
task for which several algorithmic solutions are known [2]. A
recently developed tool for document classification is fastText
[3]. It consists of a linear classifier trained on bags of character
n-grams. This is a useful feature for our task: in a compound-
ing language like Dutch, useful information can be present at
the character n-gram level. For example, if a word like bitter-
sweet appears in the data only once, an n-gram-sensitive system
could still pickup similarities between this word and the words
bitter and sweet. FastText also includes learning language mod-
els from unlabeled text [4], an excellent feature for our task,
where labeled data is scarce and unlabeled data is abundant.

In a typical time line of our work, we would study the
tweets of politicians in the weeks preceding an election and then
again in the weeks preceding the next election, some years later.
Given the long time between the periods of interest, we expect
that the classification model will benefit from having manually
labeled data of each period. However, we would like to limit
the human labeling effort because of constraints on time and re-
sources. We will apply active learning [5] for selecting the best
of the new tweets for the classification model, and label only a
small selection of these tweets. Active learning has previously
been used for reducing the size of candidate training data with
more than 99%, without any performance loss [6].

The contribution of this paper is two-fold. Firstly, we will
show that fastText can predict a non-trivial class of our political
data with reasonable accuracy. Secondly, we will outline how
active learning can be used together with fastText. We found
that this required careful experiment design.

After this introduction, we will present some related work
in Section 2. Section 3 describes our data and the machine
learning methods applied in this study. The results of the exper-
iments are presented in Section 4. In Section 5, we conclude.

2. Related work

Social media have amplified the trend towards personalization
in political communication. Attention has shifted from political
parties and their ideological stances to party leaders and individ-
ual politicians [7]. One way of studying personalization, is by
examining the behavior of politicians on social media, in par-
ticular during campaigns leading to an election. Studies have
focused on various social media like Twitter [1], Facebook [8]
and Instagram [9]. Because of its open nature, Twitter is espe-
cially popular for studying online political communication [10].

Document classification is a well-known task which origi-
nates from library science. Automatic methods for performing
this task, have been available for more than twenty years, for
example for spam filtering [11] and topic detection in USENET
newsgroups [12]. While the restricted length of social media
text poses a challenge to automatic classification methods, there
are still several studies that deal with this medium [13, 14]. Pop-
ular techniques for automatic document classification are Naive
Bayes [15] and Support Vector Machines [16]. Despite its rela-
tively young age, fastText [3] has also become a frequently used
tool for automatic document classification and topic modeling
[17, 18]. The word vector-based language models used by fast-
Text, were originally proposed by Mikolov et al. [19].

The term of active learning was introduced in the context of
machine learning in 1994 [20], referring to a form of learning
where the machine can actively select its training data. Since
then active learning has been applied in many contexts [5]. A
well-known application in natural language processing was the
study by Banko and Brill [6], which showed that with active
learning, more than 99% of the candidate training data could be
discarded without any performance loss.

In the study described in this paper, we employ labeled
tweets developed by the Centre for Media and Journalism Stud-
ies of the University of Groningen [21]. Broersma, Graham
et al. have performed several studies based on these data sets
[22, 1, 23]. Most importantly for this paper, Tjong Kim Sang et
al. [24] applied fastText to the Dutch 2012 part of the data set.
They also evaluated active learning but observed only decreas-
ing performance effects.

3. Data and methods

Our data consist of tweets from Dutch politicians written in the
two weeks leading up to the parliament elections in The Nether-
lands of 12 September 2012. The tweets have been annotated by



the Groningen Centre for Media and Journalism Studies [21].
Human annotators assigned nine classes to the tweets, among
which tweet topic and tweet function. In this paper we exclu-
sively deal with the tweet function class. This class contains
information about the goal of a tweet, for example campaign
promotion, mobilization, spreading news or sharing personal
events. A complete overview of the class labels can be found
in Table 3. A tweet can only be linked to a single class label.

The data annotation process is described in Graham et al.
[1]. The tweets were processed by six human annotators. Each
tweet was annotated by only one annotator, except for a small
set of 300 randomly chosen tweets. The small tweet subset was
used for computing inter-annotator agreement for four classes
with average pairwise Cohen kappa scores [25]. The kappa
scores were in the range 0.66—0.97. The function class proved
to be the hardest to agree on: its kappa score was 0.66. This cor-
responds with an pairwise inter-annotator agreement of 71%.

Twitter assigns a unique number to each tweet: the tweet
id. We found that the data set contained some duplicate tweet
ids. We removed all duplicates from the data set. This left
55,029 tweets. They were tokenized with the Python’s NLTK
toolkit [26] and converted to lower case. Next we removed to-
kens which we deemed useless for our classification model over
long time frames: reference to other Twitter users (also known
as tweet handles), email addresses and web addresses. These
were replaced by the tokens USER, MAIL and HTTP. Finally
the tweets were sorted by time and divided in three parts: test
(oldest 10%), development (next 10%) and train (most recent
80%). We chose to have test and development data from one
end of the data set because there are strong time dependencies
in the data. Random test data selection would have increased
the test data scores and would have made the scores less com-
parable with the scores that could be attained on other data sets.

We selected the machine learning system fastText [3] for
our study because it is easy to use, performs well and allows for
incorporation of language models. We only changed one of the
default parameter settings of fastText: the size of the numeric
vectors used for representing words in the text (dim): from 100
to 300. The reason for this change was that pretrained language
models often use this dimension, for example models derived
from Wikipedia [4]. By using the same dimension, it becomes
easier to use such external language models and compare them
with our own'. We explicitly set the minimal number of word
occurrences to be included in the model (minCount) to 5. This
should be the default value for this parameter but we have ob-
served that fastText behaves differently if the parameter value is
not set explicitly.

Because of the random initialization of weights in fastText,
experiment results may vary. In order to be able to report reli-
able results, we have repeated each of our experiments at least
ten times. We will present average scores of these repeated re-
sults. We found that the test evaluation of fastText (version May
2017) was unreliable, possibly because some test data items
are skipped during evaluation. For this reason we did not use
the test mode of the tool but rather made it predict class labels
which were then compared to the gold standard by external soft-
ware [27].

In active learning, different strategies can be used for se-
lecting candidate training data. In this study, we compare four
informed strategies with three baselines. Three of the informed
strategies are variants of uncertainty sampling [5]. The machine

I'See Tjong Kim Sang et al. [24] for a comparison between models
build from tweets and models build from Wikipedia articles.

learner labeled the unlabeled tweets and the probabilities it as-
signed to the labels were used to determine the choices in uncer-
tainty sampling. As an alternative, we have also experimented
with query-by-committee [5]. We found that its performance
for our data was similar to uncertainty sampling.

The data selection strategies used in this study are:

Sequential (baseline) choose candidate training data in
chronological order, starting with the oldest data. Be-
cause there are strong time-dependent relations in our
data, we also evaluate the variant Reversed sequential
(baseline) which selects the most recent data first.

Random selection (baseline) randomly select data.

Longest text choose the longest data items first, based on the
number of characters.

Least confident first select the data items with an automati-
cally assigned label with the lowest probability.

Margin choose the data with of which the probability of the
second-most likely label is closest to the probability of
the most likely label

Entropy first select data items of which the entropy of the au-
tomatic candidate labels is highest.

The methods Entropy, Margin and Least confident select
the data the machine learner is least confident of while Longest
text selects the data that are most informative. The entropy is
computed with the standard formula — . p; * log2(ps) [28]
where p; is the probability assigned by the machine learner to
a candidate training data item in association with one of the
twelve class labels.

In their landmark paper, Banko and Brill [6] observed that
having active learning select all the new training data, resulted
in the new data being biased toward difficult instances. They
solved this by having active learning select only half of the new
training data, while selecting the other half randomly. We will
adopt the same approach. Dasgupta [29] provides another mo-
tivation for this strategy: the bias of an initial model might pre-
vent active learning from looking for solutions in certain parts
of the data space. Incorporating randomly chosen training items
can help the model to overcome the effect of this bias.

4. Experiments and analysis

We started our experiments with reproducing the results re-
ported by previous work on this data set. Tjong Kim Sang [24]
reported a baseline accuracy of 51.740.2% when training fast-
Text on the most recent 90% of the data and testing on the old-
est 10% (averaged over 25 runs). We repeated this experiment
and derived a model from the train and development section of
the data set and evaluated this model on the test section. We ob-
tained an accuracy of 51.610.7%, averaged over 10 runs, which
is similar to the earlier reported score. This baseline score is
not very high but as the low pairwise interannotator agreement
(71%) showed, this is a difficult task.

In this study, we will compare several techniques and select
the best. In order to avoid overfitting, we will leave this data
set alone. Unless mentioned otherwise, scores reported in this
paper will have been derived from testing on the development
data section after training on the training data section, or a part
of this section. We repeat the initial experiment, this time train-
ing fastText on the train section and evaluating on the develop-
ment section. We obtained an average accuracy over ten runs
of 54.240.4%, which shows that the labels of the development
section are easier to predict than those of the test section.
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Figure 1: Performance of seven data selection methods, aver-
aged over thirty runs. The Random selection baseline (red line)
outperforms all active learning methods at 3.0% of the train-
ing data. Margin sampling (black line) is second best. There
is no significant different between the accuracies of the best six
methods at 3.0% (see Table 1). Note that the horizontal axis is
logarithmic.

Next, we evaluated active learning. Earlier, Tjong Kim
Sang et al. [24] performed two active learning experiments.
Both resulted in a decrease of performance when the newly an-
notated tweets were added to the training data. We do not be-
lieve that data quantity is the cause of this problem: their extra
1,000 tweets (2%) of the original training data size should be
enough to boost performance (see for example Banko and Brill
[6]’s excellent results with 0.7% of the training data). However,
the quality of the data could be a problem. The data from the
active data set and the original data set were annotated by differ-
ent annotators several years apart. While there was an annota-
tion guideline [21], it is possible that the annotators interpreted
it differently. It would have been better if both training data and
the active learning data had been annotated by the same anno-
tators in the same time frame.

In order to make sure that our data was consistently anno-
tated, we only use the available labeled data sets. We pretend
that the training data is unannotated and only use the available
class labels for tweets that are selected by the active learning
process. The process was split in ten successive steps. It started
with an initial data set of 1.0% of all labeled data, selected with
the Sequential strategy. FastText learned a classification model
from this set and next 0.2% of the data was selected as addi-
tional training data: 0.1% with active learning and 0.1% ran-
domly, as described in Section 3. These steps were repeated
ten times. The final training data set contained 3.0% of all la-
beled data. In order to obtain reliable results, the active learning
process was repeated 30 times.

The random initialization of fastText pose a challenge to a
successful combination with active learning. During the train-
ing process, fastText creates numeric vectors which represent
the words in the data. However, when we expand the train-
ing data set and retrain the learner on the new set, these word
vectors might change. This could invalidate the data selection
process: the newly selected training data might work fine with

Train size  Accuracy  Method
80.0% 55.6£0.3%  Ceiling (all training data)
3.0% 50.0+£0.9% Random selection
30% 49.9+09%  Margin
30% 49.6+£0.7%  Longest text
3.0% 49.6£0.9%  Sequential
30% 49.5+1.0% Least confident
30% 49.1+0.8%  Entropy
30% 453+1.3% Reversed sequential
1.0% 46.3+0.8%  Baseline

Table 1: Results of active learning experiments after training on
3.0% of the available labeled data in comparison with training
on 80.0%. The Random selection baseline outperforms all eval-
uated active learning methods on this data set, although most of
the measured differences are insignificant. Margin sampling is
second-best. Numbers after the scores indicate estimated error
margins (p < 0.05).

the old word vectors but not with the new word vectors. In or-
der to avoid this problem, we need to use the same word vectors
during an entire active learning experiment. This means that
the word vectors needed to be derived for all of the current and
future training data before each experiment, without using the
data labels. We used the skipgram model for this, with the fast-
Text parameter setting described in Section 3. A set of such
word vectors is called a language model. Providing the ma-
chine learner with word vectors from these language models
improved the accuracy score: from 54.2+0.4% to 55.61+0.3%.

The results of the active learning experiments can be found
in Figure 1 and Table 1. All the data selection strategies improve
performance with extra data, except for the Reversed sequential
method. The initial 1.0% of training data selected with the Se-
quential method was a good model of the development set, since
it originated from the same time frame as the development data.
The data from the Reversed sequential process came from the
other end of the data set and was clearly less similar to the de-
velopment set.

The differences between the other six evaluated methods
proved to be insignificant (see Table 1). It is unclear why nei-
ther Margin, nor Entropy, nor Least confident could outperform
the Random selection baseline. Perhaps the method for esti-
mating label probabilities (fastText-assigned confidence scores)
was inadequate. However, we also evaluated bagging for es-
timating label probabilities and this resulted in similar perfor-
mances. The Longest text method did not have access to as
much information as the other three informed methods. It would
be interesting to test a smarter version of this method, for in-
stance one that preferred words unseen in the training data.

It is tempting to presume that if Margin, Longest text, Least
confident and Entropy perform worse than Random selection,
then their reversed versions must do better than this baseline.
We have tested this and found that this was not the case. Short-
est text (49.1%), Smallest entropy (48.9%), Largest margin
(48.9%) and Most confident (48.8%) all perform worse than
Random selection and also worse than their original variant.

Since no active learning method outperformed the random
baseline, we used Random selection for our final evaluation:
selecting the best additional training data while evaluating on
the data sets of Tjong Kim Sang at al [24]: train (49,526 tweets),
test (5,503) and unlabeled (251,279). A single human annotator
labeled the selected tweets. At each iteration 110 tweets were
selected randomly. After labeling, the tweets were added to



Method Train size Accuracy
Baseline 90.0% 51.6+0.7%
+ language model 90.0%  55.54+0.4%
+ active learning data 1 90.2%  55.440.4%
+ active learning data 2 90.4%  55.6+£0.5%
+ active learning data 3 90.6%  55.6%+0.3%

Table 2: Results of active learning (with Random selection) ap-
plied to the test set. Additional pretrained word vectors improve
the classification model but active learning does not.

the training data and the process was repeated. Three iterations
were performed. Each of them used the same set of skipgram
word vectors, obtained from all 300,805 non-test tweets.

The result of this experiment can be found in Table 2. The
extra training data only marginally improved the performance
of the classifier: from 55.5% to 55.6%. The improvement was
not significant. This is surprising since we work with the same
amount of additional data as reported in Banko and Brill [6]:
0.6%. They report an error reduction of more than 50%, while
we find no effect.

However, the percentages of added data do not tell a com-
plete story. A close inspection of Figure 4 of the Bank and
Brill paper shows that the authors added 0.6% of training data
to 0.1% of of initial training data. This amounts to increasing
the initial training data with 600%, which must have an effect
on performance, regardless of the method used for selecting the
new data. Instead, we add 0.6% to 90% of initial training data,
an increase of only 0.7%. Unfortunately, we don’t have the re-
sources for increasing the data volume by a factor of seven. The
goal of our study was to improve classifier performance with
a small amount of additional training data, not with a massive
amount of extra data.

If relative data volumes are not enough to explain the dif-
ferences between Table 1 and Table 2, there could be two other
causes. First, the distribution of the labels of the active learn-
ing data is different from that of the original data. The latter
were collected in the two weeks before the 2012 Dutch parlia-
ment elections while the first were from a larger time frame:
2009-2017. We found that the original data contained more
campaign-related tweets, while the active learning data had
more critical, news-related and non-political tweets (Table 3).

The second reason for the differences between Tables 1 and
2 could be low inter-annotator agreement. We have included
110 tweets from the training data in each iteration, to enable
a comparison of the new annotator with the ones from 2012.
While Graham et al. [1] reported an inter-annotator agreement
of 71% for the 2012 labels, we found that the agreement was
of the new annotator with the previous ones was only 65%, de-
spite the fact that the annotator had access to the guesses of the
prediction system. A challenge for the annotator was that some
of the contexts of tweets that earlier annotators had access to,
was not available on Twitter anymore and therefore could not
be used for choosing the most appropriate label. The resulting
lower quality of the new labels might have prevented the ma-
chine learner from achieving better performances.

5. Concluding remarks

We have evaluated a linear classifier in combination with lan-
guage models and active learning on predicting the function
of Dutch political tweets. In the process, we have improved
the best accuracy achieved for our data set, from 54.8% [24] to

Class Frequency Frequency

Campaign Promotion 12,017 (22%) 53 (16%)
Campaign Trail 10,681 (19%) 61 (18%)
Own / Party Stance 9,240 (17%) 50 (15%)
Critique 8,575 (16%) 71 21%)
Acknowledgement 6,639 (12%) 32 (10%)
Personal 4,208 (8%) 19 (6%)
News/Report 1,662 (3%) 32 (10%)
Advice/Helping 1,292 2%) 0 0%)
Requesting Input 307 (1%) 0 (0%)
Campaign Action 216 (0%) 0 0%)
Other 116 (0%) 12 (4%)
Call to Vote 76 (0%) 0 (0%)
All data 55,029  (100%) 330 (100%)

Table 3: Distribution of the function labels in the annotated
data set of 55,029 Dutch political tweets from the parliament
elections of 2012 (left) and the 330 tweets selected with ac-
tive learning (right). The 2012 data contain more campaign-
related tweets while the active learning data contain more criti-
cal, news-related and non-political tweets (class Other).

55.6%. We found that combining the classifier fastText with ac-
tive learning was not trivial and required careful experiment de-
sign, with pretrained word vectors, parameter adjustments and
external evaluation procedures. In a development setting, none
of the evaluated four informed active learning performed better
than the random baseline, although the performance differences
were insignificant. In a test setting with the best data selection
method (random sampling), we measured no performance im-
provement. The causes for this could be the small volume of
the added data, label distribution differences between the new
and the original training data and the fact that it was hard for
annotators to label the data consistently.

We remain interested in improving the classifier so that we
can base future data analysis on accurate machined-derived la-
bels. One way to achieve this, would be re-examine the set of
function labels chosen for our data set. We could make the task
of the classifier easier by collapsing labels but this would make
them less informative and less interesting for follow-up work.
Alternatively, we could split labels, for example by creating a
separate binary label for each current label value. This would
make possible assigning multiple labels to one tweet, freeing
the current burden of annotators of having to choose a single
label even in cases where three or four different labels might be
plausible. Making the task of the annotators easier would im-
prove the inter-annotator agreement and may even improve the
success of applying active learning to this data set.

How to best split the labels while still being able to use the
current labels in the data, remains a topic for future work.
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