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Abstract. Medical reports are predominantly written in natural lan-
guage; as such they are not computer-accessible. A common way to
make medical narrative accessible to automated systems is by assign-
ing ‘computer-understandable’ keywords from a controlled vocabulary.
Experts usually perform this task by hand. In this paper, we investi-
gate methods to support or automate this type of medical classification.
We report on experiments using the PALGA data set, a collection of
14 million pathological reports, each of which has been classified by a
domain expert. We describe methods for automatically categorizing the
documents in this data set in an accurate way. In order to evaluate the
proposed automatic classification approaches, we compare their output
with that of two additional human annotators. While the automatic sys-
tem performs well in comparison with humans, the inconsistencies within
the annotated data constrain the maximum attainable performance.

1 Introduction

Increasing amounts of medical data are stored in electronic form. Medical data
contains a lot of information that can be used for many different purposes, such
as decision support, epidemiological research, quality control, etc. Medical re-
ports are predominantly written in natural language, and as such they are not
computer-accessible. Currently, a common way to make medical narrative acces-
sible to automated systems is by assigning ‘computer-understandable’ keywords.
Experts usually perform this task by hand. In this paper, we investigate methods
to support or automate medical classification.

The PALGA foundation is the Dutch national network and registry of histo-
and cytopathology (in Dutch: Pathologisch Anatomisch Landelijk Geautoma-
tiseerd Archief, http://www.palga.nl). Since 1971, the PALGA foundation has
been maintaining a database with abstracts of all histo- and cytopathological ex-
aminations that take place in Dutch hospitals. For every examination, a report
is written and the conclusion of the report is sent to the PALGA database. The
database can be used to find information about the history of a single patient,
but it is also available for research and national health care projects.

A key part of the reports in the PALGA database is the set of diagnosis lines
which contain a standardized summary of the report. Diagnosis lines are used
for indexing and retrieval of the conclusions. They contain a limited number of



fields (four) with terms from a restricted vocabulary. The diagnosis lines have
been created over a long period of time by a large group of doctors and there is
some uncertainty about the consistency and the quality of their contents. The
size of the database does not permit a thorough and complete manual quality
check.

In this paper we investigate the potential of machine learning approaches for
automatically generating diagnosis lines from summaries of pathological reports.
Similar tasks have, of course, been considered before in the literature; see e.g., [1]
for a (somewhat dated) overview. Three things set our setting apart from settings
reported on in the literature. First, in our case, the task is to generate diagnosis
lines from conclusion texts—summaries of reports and often very incomplete.
Second, we are working with a very large data set (over 14 million records, out of
which we use close to .5 million for our experiments; see below for details), while
most studies in the literature are based on far smaller data sets. Third, because of
its size, its usage across hospitals all over the Netherlands, and its age, the data
set is full of errors and inconsistencies, unlike most data sets used for medical
coding in the literature. Against this challenging background, we are interested
in finding answers to two research questions. First, what level of accuracy can
automatic classification obtain for this task? Specifically, what type of feature
representation is most effective? Second, and motivated by the bottlenecks that
we ran into while trying to increase the recall scores of automatic classifiers,
what performance levels do humans attain when given the exact same task as
the automatic classification system?

This paper contains five sections. After this introduction, we describe the
classification problem in more detail, outline our learning approach and discuss
related work. In Section 3, we present our experiments and their results. Section 4
provides an elaborate comparison between the best automatic learner and two
domain experts. We conclude in Section 5.

2 Method

In this section, we describe our data, the machine learning method that was
applied to the data, the techniques used for evaluation, as well as related work.

2.1 The Palga Data

The PALGA data set consists of over 14 million reports. It contains all histolog-
ical examinations that were performed in the Netherlands from 1990 up to and
including 2004. A sample record is shown in Figure 1. The reports contain three
parts: main, conclusion and diagnosis lines. The terms in the diagnosis lines are
restricted to a set of 14,000 terms, each of which is represented by a code. The
coding system used by the PALGA foundation is based on an early (1982) ver-
sion of the Systemized Nomenclature Of MEDicine (SNOMED). Different types
of terms exist; in SNOMED these are called axes. The first character of a code
represents the axis to which the code belongs. For instance, the term biopt is



Record ID 39319785
Patient ID PATIENT-23 m
Date 07 - 1990
Conclusion Huidexcisie para-orbitaal links: basaalcelcarcinoom van het solide

type. Tumorcellen reiken tot in de excisieranden.
Diagnosis line huid * gelaat * links * excisie * basaalcelcarcinoom

Fig. 1. Example record from the PALGA data set. Pathologists use everyday terms to
code diagnoses. These terms are linked to codes in the PALGA coding system.

linked to code P11400, where P indicates a Procedure. The PALGA coding sys-
tem consists of the axes Topography, Procedure, Morphology, Etiology, Function
and Disease. The coding system is ordered hierarchically.

Every code is linked to one or more terms. A thesaurus is available for en-
abling pathologists to use everyday language rather than codes in the report
writing process. Codes are linked to at most one preferred term. Terms linked
to identical codes are synonyms. For instance, both colon (preferred term) and
dikke darm are linked to code T67000.

Diagnosis lines, the computer-readable summaries of the contents of patho-
logical reports, consist of PALGA terms only. The lines are used for indexing
and retrieving PALGA reports. The quality of the retrieval results is obviously
dependent on the quality of the diagnosis lines. Detailed guidelines exist for
assuring that the lines are accurate. Among others, these guidelines state that
diagnosis lines should be complete and that the report conclusion should contain
all relevant information for a pathologist to assign correct diagnostic terms [13].
The diagnosis fields contain three compulsory diagnostic fields: the two axes To-
pography and Procedure, and Diagnosis, which may contain terms of the other
four axes. Conclusions are coded with one to four diagnosis lines.

Diagnosis lines in the PALGA database contain a lot of noise. Creating ac-
curate and precise diagnosis lines is not the main task of a pathologist and
recommendations of the type-checking tools which became available in recent
years, are often ignored. We are interested in working with a data set which
was as clean as possible, and therefore we have restrict ourselves to reports con-
taining a conclusion of at least six characters and a single diagnosis line with
valid singular terms. Additionally, we restrict the reports to those that contain
the term colon or one of its descendants. This results in a data set of 477,734
conclusions with associated diagnosis lines, hereafter called the Colon data set.
Diagnosis lines in the Colon data set contain 3.4 terms on average. The data set
was randomly divided into 75% of training data and 25% of test data.

2.2 Support Vector Machines

We decided to use Support Vector Machines (SVMs) for our medical text classi-
fication task, as they belong to the best performing learning algorithms currently
available [7]. Fast implementations of SVMs exist; we used SVMlight [8] (with
default settings) for our experiments.



One of the strengths of SVMs is that the standard linear kernel can be re-
placed by a non-linear one, e.g., a polynomial or radial basic function (RBF).
Most of our experiments are conducted with linear kernels, but we also experi-
ment with polynomial ones.

Another property of SVMs is that a classifier is trained independently of
the number of features of the data samples. This is particularly useful for text
classification, where the dimensionality of the feature space generally is high
with few relevant features [7]. Most other machine learning approaches to text
classification apply some sort of feature reduction or transformation. By using
SVMs there is no need to reduce the number of features.

2.3 Evaluation

We are interested in classifier performance for individual terms as well as predic-
tion accuracy for complete diagnosis lines. The notion of equivalence of diagnosis
lines is problematic, because the coding system allows something being said in
different ways. Among other things, the level of detail can differ; if a finding is
specified using a (slightly) more general (or specific) term, it is not necessarily
wrong. Still, we decided to use a simple notion of ‘exact’ equivalence to assess
the agreement between diagnosis lines. Thus, our evaluation results will underes-
timate the actual performance. For individual term prediction we treat diagnosis
lines as a bags of terms and perform evaluation with precision, recall and Fβ=1.

2.4 Related Work

Medical coding is the task of assigning one or more keywords to medical text.
Reasons to code medical documents include data reduction, standardization,
quality control, being able to compare individual cases, and making data avail-
able for research. In general, medical coding is considered a difficult and time-
consuming task [15, 4, 9, 19]. Ever since the introduction of formal coding sys-
tems, attempts have been made to automate the coding process [16, 20, 11]. In
[1] a distinction is being made between coding systems that abstract clinical
data (such as ICD and MeSH) and those that preserve clinical details. [14] lists
a number of information types that medical coding systems can (or should be
able to) represent. In [5] manual coding errors in two British hospitals were in-
vestigated and compared. It appeared that ‘many of the errors seem to be due
to laziness in coding, with failure to consult the appropriate manual and reliance
on memory for common codes.’ A recent study indicates that data quality does
indeed improve after the adoption of automatic encoding systems [10].

The PALGA foundation has been involved in an earlier research project re-
garding medical text classification [2]. In this particular project, complete patho-
logical reports were used to predict appropriate diagnosis lines; 7500 histology
reports from two different hospitals were considered and three different document
representations were compared. Using the best performing representation—uni-
form words—a correct diagnosis line could be found within the first five sug-
gestions for 844 of 952 reports. Other experiments showed that a representation



based on words performed better than (character) n-grams with n > 4, and that
performing training and testing with data from the same site allowed for a better
performance than when test data came from another site than the training data.
In an additional evaluation, three human experts rating the automatically pro-
duced diagnosis lines on a three-point scale, reached an agreement kappa score
of only 0.44, which shows that coding pathological reports is not a trivial task.

Recently, Gerard Burger, a pathologist associated with the PALGA foun-
dation, created a term extractor for PALGA conclusions. The program, called
AutoDiag, uses domain knowledge and ad hoc rules to propose terms for diag-
nosis lines associated to the input document. AutoDiag extracts terms from the
conclusion part of the documents, keeping terms it considers useful while ignor-
ing other terms. Prior to this paper, AutoDiag had not been properly evaluated.
We use it in our work and compare its output with that of our system.

3 Experiments and Results

We treat the task of coding of diagnoses as a text classification task and train
binary Support Vector Machines to predict individual diagnostic terms. Below,
we describe the experiments that were performed. First, we discuss experiments
with different feature representations. After that, we evaluate other variations,
changing output class representations, machine learning parameters or data sets.
We conclude the section with a discussion.

3.1 Feature Engineering

To create a baseline, we chose SVMs with bag of words (bow) for the feature
representation; this is a common representation for text classification. In the bow
representation, a document is represented as a feature vector, where each element
in the vector indicates the presence or absence of a word in the document. In
order to reduce the size of the vector, we discard the least infrequent words
(frequency < 2) as well as the most frequent words (so-called stop words; we use
a list from the Snowball Porter stemmer for Dutch [18]). The dimensionality of
the feature vectors for the bow experiment is 21,437. The bow features allowed
for a reasonable performance on the Colon test data (section 2.1): precision
83.28%, recall 72.92% and Fβ=1 77.76%.

Since in the baseline results, recall was considerably lower than precision, we
focused on improving recall. We evaluated several variations on the bow feature
representation to accomplish this:

– replacing binary feature values by tf-idf (term frequency-inverse document
frequency) weights

– replacing word unigrams by word bigrams (19,641 features)
– adding to the features, terms identified from the conclusion texts (1,286 extra

features), and/or their parents according to the thesaurus (1,810)
– reducing the number of features by using stems rather than words (19,098

features) or by splitting compound words (19,006 features)



Representation Precis. Recall Fβ=1 Represent. Precis. Recall Fβ=1

a baseline 83.28% 72.92% 77.76% j tf-idf 83.14% 73.71% 78.14%
b +terms 83.49% 73.16% 77.98% k +terms 83.24% 73.94% 78.31%
c +terms+parents 83.53% 73.22% 78.04% l +te+parent 83.35% 74.09% 78.45%
d terms 79.92% 60.91% 69.13% m +te+pa+pr 83.28% 73.69% 78.19%
e +parents 80.12% 66.41% 72.62% n +prep 83.10% 73.26% 77.87%
f +parents+prep 79.80% 67.92% 73.39% o bigrams 84.68% 74.83% 79.45%
g +prep 80.55% 62.05% 70.10% p +terms 84.85% 75.56% 79.94%
h stems 83.23% 72.71% 77.61% q +te+parent 84.83% 75.40% 79.84%
i split compounds 83.18% 72.37% 77.40% r +te+prep 84.84% 75.58% 79.94%

s +prep 84.70% 74.88% 79.49%

Table 1. Influence of different feature representations on term identification; highest
scores in boldface.

– preprocessing the input text with Gerard Burger’s AutoDiag rule-based
term-identification tool (section 2.4)

A summary of the results of the experiments can be found in Table 1. Adding
term features and parent features to the baseline set, led to small but significant
improvements of both precision and recall (a-c). Replacing the baseline features
with term features, had a negative influence on performance (d-g). The stem
and the split compound features proved to be worse than the baseline set (h-i).
Replacing binary weights by tf-idf weights, resulted in significantly better recall
scores (j-n). All experiments with bigram features (o-s) reached significantly bet-
ter precision and recall scores than the baseline. Bigram features with additional
term features (p) reached the highest precision (84.85%) and recall (75.56%)
scores. The experiments were inconclusive with respect to preprocessing the in-
put texts. In the terms group, the effect was positive (f-g). With bigrams, scores
decreased (r-s) and with tf-idf, performance did not change (m-n).

3.2 Changing Learning Parameters and Output Classes

We performed three alternative experiments to see if an additional performance
gain could be obtained. First we, evaluated the influence of an important pa-
rameter of the machine learning algorithm: the kernel type. In the previous
experiments we used a linear kernel. For the next experiment we tested using
a polynomial kernel with three different degrees: 1, 2 and 3. With the baseline
feature representation, bag of words, the best results were obtained with degree
value 2: precision 84.89% and recall 76.11%, both of which outperform the re-
sults of the previous section. However, the performance gain came with a price:
the polynomial kernels take much more time to train than the linear ones.

In the next two experiments we attempted to take advantage of the assump-
tion that the terms appearing in diagnosis lines are dependent. First, we trained



SVMs to predict bigrams of terms rather than unigrams. However, for both fea-
ture representations that we tested, the baseline set and bigram features plus
terms, the recall scores decreased significantly when predicting term bigrams.
Next, we evaluated a cascaded learner: first train SVMs to perform the classifi-
cation task with baseline features and then train a second learner with additional
features from the output of the first system. The results were similar to the pre-
vious experiment: improved precision scores (85.23%) but lower recall (72.40%).

3.3 Changing Data Sets

Additional experiments were performed to determine whether training and test-
ing with data from different time-periods affects performance. The data was di-
vided into three periods of five years (1990–1994, 1995–1999, 2000–2004). From
each period 75,000 records were available for training and 24,995 for testing. Best
results were obtained with training and test sets from the same time-periods
(bag of words: Fβ=1 77.98%, 78.61% and 77.22% respectively). Performance was
significantly worse for experiments with training and test sets from different
time-periods (on average, 75.41%). When training and test sets were ten years
apart, performance was even lower, 74.09%.

3.4 Discussion

The experiments revealed that compared to precision, the recall scores are rather
low. I.e., if a classifier assigns a term to a conclusion, it is probably correct, but
many positive instances are missed. Despite several attempts to increase recall,
it was mainly precision that went up and recall remained relatively low.

Several reasons can be given for explaining why recall scores are lower than
precision scores. First, many terms in the diagnosis terms are infrequent and it
is hard to train classifiers for classes with a small amount of positive samples.
Second, the information needed in a diagnosis line case might not always be
available in the corresponding conclusion or that information might be lost in
the conversion to features. And third, low recall scores might be caused by the
incorrect or inconsistently tagged data.

So there are different possible causes for low recall. But can we expect to
attain higher recall scores, or is the problem simply very hard? How well do ex-
perts perform if they only have access to the conclusions (instead of the complete
report) for coding purposes? Do experts consistently assign the same codes to
conclusions? These matters will be investigated in the next section.

4 A Comparison with Domain Experts

In this section, we compare two of the annotation approaches discussed in the
previous section with human expert annotators. Based on earlier work, we cre-
ated a balanced corpus with 1000 texts of which 35% were records for which
the baseline obtained a high score, 19% were records with a low score while the



Kappa scores
Precision Recall Fβ=1 Corpus P A P B

bow 83.62% 72.87% 77.87% 0.65 0.58 0.61

bigrams+terms 84.88% 75.47% 79.90% 0.80 0.52 0.56

Pathologist A 71.75% 72.54% 72.14% 0.44 0.65

Pathologist B 66.75% 67.33% 67.04% 0.42 0.55

AutoDiag 53.10% 62.19% 57.28% 0.22 0.31 0.46

Table 2. Precision, recall, and Fβ=1 of new expert ratings compared to the diagnosis
lines in the corpus and Kappa agreement scores between the automatic systems, the
humans and the corpus, where “P A” (“P B”) stands for “Pathologist A” (“Pathologist
B”). Scores have been averaged over terms suggested by raters in the first column.

remaining 46% had a medium classification score of the baseline system (details
can be found in [21]). Next, two experts were invited to re-annotate the texts
based on only the conclusion part. Even though each text had already been coded
by experts, it is not obvious that their ratings are correct (or optimal) or that
conclusions contain sufficient information for coding. Comparing the new expert
ratings to the corpus will enable us to identify differences in term assignments.

We created a web interface which presented a conclusion text to the anno-
tator together with terms predicted by the baseline system and terms that were
extracted from the conclusion with a basic term extractor. Terms were grouped
into the three main parts of the diagnosis lines: Topography, Procedure and
Diagnosis. The two annotators from different hospitals had the opportunity to
suggest alternative terms when they regarded the suggested terms as incomplete.
Each of the two pathologists took over four and a half hours to complete this
task (about sixteen seconds per conclusion text).

The diagnosis lines created by the two experts were compared with the lines
in the corpus. Table 2 lists the results as well as the scores of the baseline
system, the best bigram system and the rule-based term extractor AutoDiag.
The classifiers proved to be better at reproducing the corpus’ term assignments
than the experts. Another aspect worth noting is that our human annotators
score better on recall than on precision, suggesting that the classification task is
inherently hard (and not “just” a recall problem).

These are our explanations for the differences between humans and systems:

– some (complex) terms consist of multiple simple terms, and replacing one
by the other results in an error

– often when there is a mismatch between two terms, one is just higher or
lower in the same hierarchy

– human annotations proved to be more elaborate than system annotations
– humans also had a larger number of conclusion texts with multiple diagnosis

lines (10% versus 0)
– while systems always assign terms to conclusion texts, humans frequently

assigned the term unknown (18% compared with 1% in the corpus)



As an aside, in our evaluation we also included AutoDiag, the rule-based term
extractor mentioned before. With an F-score of 57.28% it performed worse than
all other methods we considered.

In general, large differences exist between the diagnosis lines in the corpus
and the new expert ratings. Amongst themselves the experts also disagree about
the terms that should be assigned to conclusions. So, again, the task of assigning
diagnostic terms to PALGA conclusions is hard, and it is not just recall that
is a problem. At higher levels in the hierarchy of terms, agreement seems to be
much better. These results (on the PALGA data set) confirm findings of earlier
studies investigating the reliability of coded diagnoses [12, 3], and more general
work on the selection of search terms [17, 6].

5 Concluding Remarks

We have examined the potential of machine learning approaches for automat-
ically generating diagnosis lines from summaries of pathological reports. We
found that automatic systems perform well in predicting individual diagnosis
line terms from text conclusions (precision 85% and recall 75%). However, it
proved to be difficult to attain performance levels that were distinctively higher
than the baseline scores (83% and 73%).

In a follow-up study, we found that, when restricting access to only the
conclusion part of the texts, human experts perform worse than the automatic
systems when tested on their ability to reproduce the exact diagnosis lines of
the evaluation corpus. This is partly caused by conclusions being incomplete.
However, there was also a lack of agreement between the two expert annotators,
for example on term specificity. Assigning diagnosis lines to text conclusions
proves to be a difficult task.

We conclude that machine learning approaches can achieve good perfor-
mances in predicting diagnosis lines. By selecting pairs of text conclusions and
diagnosis lines for which they perform less well, they can be applied for spotting
mismatches between such pairs. Using the predicted diagnosis lines of the sys-
tems without an additional manual check would be less appropriate given the
machine learner’s inability to identify incomplete conclusions. As to supporting
the coding task of pathologists, we expect the best results from systems trained
on documents of individual doctors, as personal coding assistants.
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