
A Constraint Satisfaction Approach to Dependency Parsing

Sander Canisius
ILK / Communication and Information Science

Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands

S.V.M.Canisius@uvt.nl

Erik Tjong Kim Sang
ISLA, University of Amsterdam,

Kruislaan 403, NL-1098 SJ Amsterdam,
The Netherlands

erikt@science.uva.nl

Abstract

We present an adaptation of constraint satis-
faction inference (Canisius et al., 2006b) for
predicting dependency trees. Three differ-
ent classifiers are trained to predict weighted
soft-constraints on parts of the complex out-
put. From these constraints, a standard
weighted constraint satisfaction problem can
be formed, the solution to which is a valid
dependency tree.

1 Introduction
Like the 2006 edition, the CoNLL-2007 shared task
focusses on dependency parsing and aims at com-
paring state-of-the-art machine learning algorithms
applied to this task (Nivre et al., 2007). For our
official submission, we used the dependency parser
described by Canisius et al. (2006a). In this paper,
we present a novel approach to dependency parsing
based on constraint satisfaction. The technique is
an adaptation of earlier work using constraint satis-
faction techniques for predicting sequential outputs
(Canisius et al., 2006b). We evaluated our approach
on all ten data sets of the 2007 shared task1.

We will present the new constraint satisfaction
method for dependency parsing in Section 2. The
method is evaluated in Section 3, in which we will
also present a brief error analysis. Finally, Section 4
presents our main conclusions.

1Hajič et al. (2004), Aduriz et al. (2003), Martı́ et al. (2007),
Chen et al. (2003), Böhmová et al. (2003), Marcus et al.
(1993), Johansson and Nugues (2007), Prokopidis et al. (2005),
Csendes et al. (2005), Montemagni et al. (2003), Oflazer et al.
(2003)

2 Constraint Satisfaction Inference for
Dependency Trees

The parsing algorithm we used is an adaptation for
dependency trees of the constraint satisfaction in-
ference method for sequential output structures pro-
posed by Canisius et al. (2006b). The technique
uses standard classifiers to predict a weighted con-
straint satisfaction problem, the solution to which is
the complete dependency tree. Each predicted con-
straint covers a small part of the complete tree. Con-
straint overlap ensures that global output structure is
taken into account, even though the classifiers only
make local predictions in isolation of each other.

A weighted constraint satisfaction problem (W-
CSP) is a tuple (X,D,C,W ). Here, X =
{x1, x2, . . . , xn} is a finite set of variables. D(x)
is a function that maps each variable to its domain,
and C is a set of constraints on the values assigned
to the variables. For a traditional (non-weighted)
constraint satisfaction problem, a valid solution is
an assignment of values to the variables that (1) are
a member of the corresponding variable’s domain,
and (2) satisfy all constraints in the set C . Weighted
constraint satisfaction, however, relaxes this require-
ment to satisfy all constraints. Instead, constraints
are assigned weights that may be interpreted as re-
flecting the importance of satisfying that constraint.
The optimal solution to a W-CSP is the solution that
assigns those values that maximise the sum of the
weights of satisfied constraints.

To adapt this framework to predicting a depen-
dency tree for a sentence, we construct a constraint
satisfaction problem by first introducing one vari-



Figure 1: Dependency tree for the sentence No it
wasn’t Black Monday

able xi for each token of the sentence. This vari-
able’s value corresponds to the dependency relation
that token is the modifier of, i.e. it should specify a
relation type and a head token. The constraints of the
CSP are predicted by a classifier, where the weight
for a constraint corresponds to the classifier’s confi-
dence estimate for the prediction.

For the current study, we trained three classifiers
to predict three different types of constraints.

1. Cdep(head,modifier, relation), i.e. the re-
sulting dependency tree should have a de-
pendency arc from head to modifier la-
belled with type relation. For the exam-
ple tree in Figure 1, among others the con-
straint Cdep(head = was,modifier =
No, relation = V MOD) should be pre-
dicted.

2. Cdir(modifier, direction), the relative posi-
tion (i.e. to its left or to its right) of the head
of modifier. The tree in Figure 1 will give
rise to constraints such as Cdir(modifier =
Black, direction = RIGHT ).

3. Cmod(head, relation), in the dependency tree,
head should be modified by a relation of type
relation. The constraints generated for the
word was in Figure 1 would be Cmod(head =
was, relations = SBJ), and Cmod(head =
was, relations = V MOD).

Predicting constraints of type Cdep is essentially
what is done by Canisius et al. (2006a); a clas-
sifier is trained to predict a relation label, or a
symbol signalling the absence of a relation, for
each pair of tokens in a sentence2 . The training

2For reasons of efficiency and to avoid having too many neg-
ative instances in the training data, we follow the approach of

data for this classifier consists of positive examples
of constraints to generate, e.g. was,No, V MOD,
and negative examples, of constraints not to
generate, e.g. was,Black,NONE, but also
No,was,NONE. In the aforementioned paper, it
is shown that downsampling the negative class in
the classifier’s training data improves the recall for
predicted constraints. The fact that improved recall
comes at the cost of a reduced precision is compen-
sated for by our choice for the weighted constraint
satisfaction framework: an overpredicted constraint
may still be left unsatisfied if other, conflicting con-
straints outweigh its own weight.

In addition to giving rise to a set of constraints,
this classifier differs from the other two in the sense
that it is also used to predict the domains of the vari-
ables, i.e. any dependency relation not predicted by
this classifier will not be considered for inclusion in
the output tree.

Whereas the Cdep classifier classifies instances
for each pair of words, the classifiers for Cdir and
Cmod only classify individual tokens. The features
for these classifiers have been kept simple and the
same for both classifiers: a 5-slot wide window of
both tokens and part-of-speech tags, centred on the
token currently being classified. The two classifiers
differ in the classes they predict. For Cdir , there are
only three possible classes: LEFT, RIGHT, NONE.
Instances classified as LEFT, or RIGHT give rise to
constraints, whereas NONE implies that no Cdep con-
straint is added for that token.

For Cmod there is a rather large class space; a
class label reflects all modifying relations for the to-
ken, e.g. SBJ+VMOD. From this label, as many con-
straints are generated as there are different relation
types in the label.

With the above, a weighted constraint satisfaction
problem can be formulated that, when solved, de-
scribes a dependency tree. As we formulated our
problem as a constraint satisfaction problem, any
off-the-shelf W-CSP solver could be used to obtain
the best dependency parse. However, in general such
solvers have a time complexity exponential in the
number of variables, and thus in the length of the
sentence. As a more efficient alternative we chose to
use the CKY algorithm for dependency parsing (Eis-
Canisius et al. (2006a) of limiting the maximum distance be-
tween a potential head and modifier.



Language LAS ’06 UAS ’06
Arabic 60.36 +1.2 78.61 +1.7
Basque 64.23 +1.1 72.24 +2.1
Catalan 77.33 +1.9 84.73 +3.1
Chinese 71.73 +1.3 77.29 +2.5
Czech 57.58 +1.4 75.61 +3.5
English 79.47 +2.2 81.05 +2.8
Greek 62.32 +2.0 76.42 +4.0
Hungarian 66.86 +2.6 72.52 +4.7
Italian 77.04 +1.5 81.24 +2.2
Turkish 67.80 -0.3 75.58 +0.4

Table 1: Performance of the system applied to the
test data for each language. The ’06 columns show
the gain/loss with respect to the parser of Canisius et
al. (2006a).

ner, 2000) for computing the best solution, which
has only cubic time complexity, but comes with the
disadvantage of only considering projective trees as
candidate solutions.

3 Results and discussion
We tested our system on all ten languages of the
shared task. The three constraint classifiers have
been implemented with memory-based learning. No
language-specific parameter optimisation or feature
engineering has been performed, but rather the exact
same system has been applied to all languages. La-
belled and unlabelled attachment scores are listed in
Table 1. In addition, we show the increase/decrease
in performance when compared with the parser of
Canisius et al. (2006a); for all languages but Turk-
ish, there is an increase, mostly somewhere between
1.0 and 2.0 percent in labelled attachment score.

The parser by Canisius et al. (2006a) can be
considered a rudimentary implementation of con-
straint satisfaction inference that only uses Cdep con-
straints. The parser described in this paper elabo-
rates this by adding (1) the Cmod and Cdir soft con-
straints, and (2) projectivity and acyclicity hard con-
straints, enforced implicitly by the CKY algorithm.

To evaluate the effect of each of these constraints,
Table 2 shows the labelled attachment scores for
several parser configurations; starting with the 2006
parser, i.e. a parser with only Cdep constraints, then
the CKY-driven Cdep parser, i.e. with acyclicity and

Language ’06 Cdep C
mod/
dep C

dir/
dep all

Arabic 59.13 +0.3 +0.9 +0.9 +1.2
Basque 63.17 +0.3 +0.4 +0.9 +1.1
Catalan 75.44 +0.8 +1.2 +1.4 +1.9
Chinese 70.45 +0.4 +1.2 +0.4 +1.3
Czech 56.14 +0.5 +0.5 +1.1 +1.4
English 77.27 +0.4 +1.4 +1.2 +2.2
Greek 60.35 +0.4 +0.6 +1.6 +2.0
Hungarian 64.31 +1.9 +1.3 +2.8 +2.6
Italian 75.57 +0.2 +1.0 +1.1 +1.5
Turkish 68.09 -0.2 -0.3 -0.3 -0.3

Table 2: Performance of the parser by Canisius et al.
(2006a) and the performance gain of the constraint
satisfaction inference parser with various constraint
configurations.

projectivity constraints, then with Cmod, and Cdir

separately, and finally, the full parser based on all
constraints. It can be seen that supplementing the
Cdep-only parser with hard constraints for acyclic-
ity and projectivity already gives a small perfor-
mance improvement. For some languages, such
as Italian (+0.2), this improvement is rather small,
however for Hungarian 1.87 is gained only by us-
ing CKY. The remaining columns show that adding
more constraints improves performance, and that for
all languages but Turkish and Hungarian, using all
constraints works best. Interestingly, for Czech,
the combination Cdep, Cmod (+0.46) seems to be
slightly worse than only using Cdep (+0.51). How-
ever, when used together with Cdir, the Cmod con-
straint does have a small positive impact: the combi-
nation Cdep, Cdir improves 1.14; adding Cmod leads
to an improvement of 1.44.

While in comparison with the system of Canisius
et al. (2006a) the addition of extra constraints has
clearly shown its use, we expect the Cdep classifier
still to be the performance bottleneck of the sys-
tem. This is mainly due to the fact that this classifier
is also responsible for defining the domains of the
CSP variables, i.e. which dependency relations will
be considered for inclusion in the output. For this
reason, we performed an error analysis of the out-
put of the Cdep classifier and the effect it has on the
performance of the complete system.

In our error analysis, we distinguish three types of



Cdep prec. rec.
Language prec. rec. %OOD %OOD
Arabic 54.90 73.66 78.83 77.95
Basque 55.82 74.10 85.05 83.66
Catalan 65.19 87.25 80.29 80.00
Chinese 65.10 76.49 83.79 82.94
Czech 53.64 74.35 81.16 80.27
English 59.37 90.08 67.51 66.63
Greek 53.24 76.29 79.96 79.08
Hungarian 44.71 78.64 69.08 67.45
Italian 71.70 82.57 87.97 87.32
Turkish 64.92 72.79 89.11 88.51

Table 3: Columns two and three: precision and re-
call on dependency predictions by the Cdep classi-
fier. Columns four and five: percentage of depen-
dency arc precision and recall errors caused by Cdep

recall errors (out-of-domain errors).

errors: 1) label errors, a correct dependency arc was
added to the tree, but its label is incorrect, 2) recall
errors, the true dependency tree contains an arc that
is missing from the predicted tree, and 3) precision
errors, the predicted tree contains a dependency arc
that is not part of the true dependency parse.

Label errors are always a direct consequence of
erroneous Cdep predictions. If the correct arc was
predicted, but with an incorrect label, then by defi-
nition, the correct arc with the correct label cannot
have been predicted at the same time. In case of the
other two types of errors, the correct constraints may
well have been predicted, but afterwards outweighed
by other, conflicting constraints. Nevertheless, pre-
cision and recall errors may also be caused by the
fact that the Cdep classifier simply did not predict a
dependency arc where it should have. We will refer
to those errors as out-of-domain errors, since the do-
main of at least one of the CSP variables does not
contain the correct value. An out-of-domain error
is a direct consequence of a recall error made by
the Cdep classifier. To illustrate these interactions,
Table 3 shows for all languages the precision and
recall of the Cdep classifier, and the percentage of
dependency precision and recall errors that are out-
of-domain errors.

The table reveals several interesting facts. For En-
glish, which is the language for which our system at-

tains its highest score, the percentage of dependency
precision and recall errors caused by Cdep recall er-
rors is the lowest of all languages. This can directly
be related to the 90% recall of the English Cdep clas-
sifier. Apparently, the weak precision (59%), caused
by down-sampling the training data, is compensated
for in the subsequent constraint satisfaction process.

For Italian, the percentage of out-of-domain-
related errors is much higher than for English. At
the same time, the precision and recall of the Cdep

classifier are much more in balance, i.e. a higher
precision, but a lower recall. We tried breaking this
balance in favour of a higher recall by applying an
even stronger down-sampling of negative instances,
and indeed the parser benefits from this. Labelled
attachment increases from 77.04% to 78.41%. The
precision and recall of this new Cdep classifier are
58.65% and 87.15%, respectively.

The lowest Cdep precision has been observed for
Hungarian (44.71), which unfortunately is not mir-
rored by a high recall score. Remarkably however,
after English, Hungarian has the lowest percentage
of dependency errors due to Cdep recall errors (69.08
and 67.45). It is therefore hypothesised that not
the low recall, but the low precision is the main
cause for errors made on Hungarian. With this in
mind, we briefly experimented with weaker down-
sampling ratios in order to boost precision, but so
far we did not manage to attain better results.

4 Concluding remarks
We have presented a novel dependency parsing
method based on a standard constraint satisfaction
framework. First results on a set of ten different lan-
guages have been promising, but so far no extensive
optimisation has been performed, which inevitably
reflects upon the scores attained by the system. Fu-
ture work will focus on tuning the many parameters
our system has, as well as on experimenting with dif-
ferent types of constraints to supplement or replace
one or more of the three types used in this study.

Acknowledgements
The authors wish to thank Antal van den Bosch for
discussions and suggestions. This research is funded
by NWO, the Netherlands Organization for Scien-
tific Research under the IMIX programme.



References
A. Abeillé, editor. 2003. Treebanks: Building and Using

Parsed Corpora. Kluwer.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Diaz de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In Proc. of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 201–204.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(Abeillé, 2003), chapter 7, pages 103–127.

S. Canisius, T. Bogers, A. van den Bosch, J. Geertzen,
and E. Tjong Kim Sang. 2006a. Dependency parsing
by inference over high-recall dependency predictions.
In Proceedings of CoNLL-X. New York, NY, USA.

S. Canisius, A. van den Bosch, and W. Daelemans.
2006b. Constraint Satisfaction Inference: Non-
probabilistic Global Inference for Sequence Labelling.
Proceedings of the EACL 2006 Workshop on Learning
Structured Information in Natural Language Applica-
tions, pages 9–16.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Abeillé
(Abeillé, 2003), chapter 13, pages 231–248.

D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor. 2005.
The Szeged Treebank. Springer.

J. Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. Advances in Probabilistic
and Other Parsing Technologies, pages 29–62.

J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank. Computational Linguistics, 19(2):313–330.

M. A. Martı́, M. Taulé, L. Màrquez, and M. Bertran.
2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,

M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (Abeillé, 2003), chap-
ter 11, pages 189–210.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsing. In Proc.
of the CoNLL 2007 Shared Task. Joint Conf. on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL).

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.


