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Abstract

Dividing sentences in chunks of words is
a useful preprocessing step for parsing,
information extraction and information
retrieval. (Ramshaw and Marcus, 1995)
have introduced a ” convenient” data rep-
resentation for chunking by converting
it to a tagging task. In this paper we
will examine seven different data repre-
sentations for the problem of recogniz-
ing noun phrase chunks. We will show
that the the data representation choice
has a minor influence on chunking per-
formance. However, equipped with the
most suitable data representation, our
memory-based learning chunker was able
to improve the best published chunking
results for a standard data set.

1 Introduction

The text corpus tasks parsing, information extrac-
tion and information retrieval can benefit from di-
viding sentences in chunks of words. (Ramshaw
and Marcus, 1995) describe an error-driven
transformation-based learning (TBL) method for
finding NP chunks in texts. NP chunks (or
baseNPs) are non-overlapping, non-recursive noun
phrases. In their experiments they have modeled
chunk recognition as a tagging task: words that
are inside a baseNP were marked I, words outside
a baseNP received an 0 tag and a special tag B was
used for the first word inside a baseNP immedi-
ately following another baseNP. A text example:

original:

In [y early trading n] in [y Hong Kong
~] [~ Monday n], [~ gold n] was quoted
at [v $ 366.50 n] [v an ounce y] .
tagged:

In/O early/I trading/I in/O Hong/I
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Kong/I Monday/B ,/O gold/I was/O
quoted/O at/O $/I 366.50/I an/B
ounce/I ./O

Other representations for NP chunking can be
used as well. An example is the representation
used in (Ratnaparkhi, 1998) where all the chunk-
initial words receive the same start tag (analo-
gous to the B tag) while the remainder of the
words in the chunk are paired with a different tag.
This removes tagging ambiguities. In the Ratna-
parkhi representation equal noun phrases receive
the same tag sequence regardless of the context in
which they appear.

The data representation choice might influence
the performance of chunking systems. In this pa-
per we discuss how large this influence is. There-
fore we will compare seven different data rep-
resentation formats for the baseNP recognition
task. We are particularly interested in finding out
whether with one of the representation formats
the best reported results for this task can be im-
proved. The second section of this paper presents
the general setup of the experiments. The results
can be found in the third section. In the fourth
section we will describe some related work.

2 Methods and experiments

In this section we present and explain the data
representation formats and the machine learning
algorithm that we have used. In the final part
we describe the feature representation used in our
experiments.

2.1 Data representation

We have compared four complete and three partial
data representation formats for the baseNP recog-
nition task presented in (Ramshaw and Marcus,
1995). The four complete formats all use an I tag
for words that are inside a baseNP and an 0 tag
for words that are outside a baseNP. They differ
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Table 1: The chunk tag sequences for the example sentence In early trading in Hong Kong Monday ,

gold was quoted at § 366.50 an ounce .

for seven different tagging formats. The I tag has been used

for words inside a baseNP, 0 for words outside a baseNP, B and [ for baseNP-initial words and E and ]

for baseNP-final words.

in their treatment of chunk-initial and chunk-final
words:

IOB1 The first word inside a baseNP
immediately following an-
other baseNP receives a B
tag (Ramshaw and Marcus,
1995).

All baseNP-initial words receive a
B tag (Ratnaparkhi, 1998).

The final word inside a baseNP
immediately preceding another
baseNP receives an E tag.

All baseNP-final words receive an
E tag.

I0B2

IOE1

IOE2

We wanted to compare these data representa-
tion formats with a standard bracket representa-
tion. We have chosen to divide bracketing exper-
iments in two parts: one for recognizing opening
brackets and one for recognizing closing brackets.
Additionally we have worked with another partial
representation which seemed promising: a tag-
ging representation which disregards boundaries
between adjacent chunks. These boundaries can
be recovered by combining this format with one
of the bracketing formats. Our three partial rep-
resentations are:

[ All baseNP-initial words receive an
[ tag, other words receive a . tag.

]  All baseNP-final words receive a |

tag, other words receive a . tag.

Words inside a baseNP receive an I

tag, others receive an 0 tag.

10

These partial representations can be combined
in three pairs which encode the complete baseNP
structure of the data:

[+] A word sequence is regarded as a
baseNP if the first word has re-
ceived an [ tag, the final word has
received a | tag and these are the
only brackets that have been as-
signed to words in the sequence.
In the IO format, tags of words
that have received an I tag and an
[ tag are changed into B tags. The
result is interpreted as the IOB2
format.

In the IO format, tags of words
that have received an I tag and a
] tag are changed into E tags. The
result is interpreted as the IOE2
format.

[+ 10

10 + ]

Examples of the four complete formats and the
three partial formats can be found in table 1.

2.2 Memory-Based Learning

We have build a baseNP recognizer by training
a machine learning algorithm with correct tagged
data and testing it with unseen data. The ma-
chine learning algorithm we used was a Memory-
Based Learning algorithm (MBL). During train-
ing it stores a symbolic feature representation of
a word in the training data together with its classi-
fication (chunk tag). In the testing phase the algo-
rithm compares a feature representation of a test
word with every training data item and chooses
the classification of the training item which is clos-
est to the test item.

In the version of the algorithm that we have
used, 1B1-1G, the distances between feature rep-
resentations are computed as the weighted sum
of distances between individual features (Daele-
mans et al., 1998). Equal features are defined to
have distance 0, while the distance between other
pairs is some feature-dependent value. This value
is equal to the information gain of the feature, an
information theoretic measure which contains the



word/POS context Fpg—1

IOB1 L=2/R=1 89.17
I0B2 L=2/R=1 88.76
IOE1 L=1/R=2 88.67
I0E2 L=2/R=2 89.01
[+] | L=2/R=1+ L=0/R=2 | 89.32

[+ 10 | L=2/R=0 + L=1/R=1 | 89.43
10 +] | L=1/R=1 4 L=0/R=2 | 89.42

Table 2: Results first experiment series: the best Fg—1 scores for different left (L) and right (R)
word/POS tag pair context sizes for the seven representation formats using 5-fold cross-validation on

section 15 of the WSJ corpus.

normalized entropy decrease of the classification
set caused by the presence of the feature. Details
of the algorithm can be found in (Daelemans et
al., 1998)*.

2.3 Representing words with features

An important decision in an MBL experiment is
the choice of the features that will be used for
representing the data. IB1-1G is thought to be
less sensitive to redundant features because of the
data-dependent feature weighting that is included
in the algorithm. We have found that the presence
of redundant features has a negative influence on
the performance of the baseNP recognizer.

In (Ramshaw and Marcus, 1995) a set of trans-
formational rules is used for modifying the clas-
sification of words. The rules use context infor-
mation of the words, the part-of-speech tags that
have been assigned to them and the chunk tags
that are associated with them. We will use the
same information as in our feature representation
for words.

In TBL, rules with different context information
are used successively for solving different prob-
lems. We will use the same context information
for all data. The optimal context size will be
determined by comparing the results of different
context sizes on the training data. Here we will
perform four steps. We will start with testing dif-
ferent context sizes of words with their part-of-
speech tag. After this, we will use the classifica-
tion results of the best context size for determining
the optimal context size for the classification tags.
As a third step, we will evaluate combinations of
classification results and find the best combina-
tion. Finally we will examine the influence of an
MBL algorithm parameter: the number of exam-
ined nearest neighbors.

'1B1-1G is a part of the TiMBL software package
which is available from http://ilk.kub.nl

3 Results

We have used the baseNP data presented in
(Ramshaw and Marcus, 1995)2. This data was
divided in two parts. The first part was training
data and consisted of 211727 words taken from
sections 15, 16, 17 and 18 from the Wall Street
Journal corpus (WSJ). The second part was test
data and consisted of 47377 words taken from
section 20 of the same corpus. The words were
part-of-speech (POS) tagged with the Brill tagger
and each word was classified as being inside or
outside a baseNP with the IOB1 representation
scheme. The chunking classification was made by
(Ramshaw and Marcus, 1995) based on the pars-
ing information in the WSJ corpus.

The performance of the baseNP recognizer can
be measured in different ways: by computing
the percentage of correct classification tags (ac-
curacy), the percentage of recognized baseNPs
that are correct (precision) and the percentage of
baseNPs in the corpus that are found (recall). We
will follow (Argamon et al., 1998) and use a com-
bination of the precision and recall rates: Fg—; =
(2*precision*recall) / (precision+recall).

In our first experiment series we have tried to
discover the best word/part-of-speech tag context
for each representation format. For computational
reasons we have limited ourselves to working with
section 15 of the WSJ corpus. This section con-
tains 50442 words. We have run 5-fold cross-
validation experiments with all combinations of
left and right contexts of word/POS tag pairs in
the size range 0 to 4. A summary of the results
can be found in table 2.

The baseNP recognizer performed best with rel-
atively small word/POS tag pair contexts. Differ-
ent representation formats required different con-
text sizes for optimal performance. All formats

2The data described in (Ramshaw
and  Marcus, 1995) is  available  from
ftp://ftp.cis.upenn.edu/pub/chunker/



word/POS context chunk tag context | Fg=;

IOB1 L=2/R=1 1/2 90.12
I0B2 L=2/R=1 1/0 89.30
IOE1 L=1/R=2 1/2 89.55
IOE2 L=1/R=2 0/1 89.73
[+] | L=2/R=1 + L=0/R=2 0/04+0/0 89.32

[+ 10 | L=2/R=0 + L=1/R=1 0/0 +1/1 89.78
I0 +] | L=1/R=1 4 L=0/R=2 1/14+0/0 89.86

Table 3: Results second experiment series: the best Fg=1 scores for different left (L) and right (R)
chunk tag context sizes for the seven representation formats using 5-fold cross-validation on section 15

of the WSJ corpus.

word/POS | chunk tag combinations Fg—1
IOB1 2/1 1/1 0/01/12/23/3 90.53
I0B2 2/1 1/0 2/1 89.30
IOE1 1/2 1/2 0/01/12/23/3 90.03
IOE2 1/2 0/1 1/2 89.73
[+] | 2/1+0/2 | 0/0+0/0 -+ - 89.32
[+I0] 2/0+1/1 |0/0+1/1|-+0/11/22/33/4| 89.91
I0+]]1/14+0/2|1/14+0/0|0/11/22/33/4+ - | 90.03

Table 4: Results third experiment series:

the best Fg—1 scores for different combinations of chunk tag

context sizes for the seven representation formats using 5-fold cross-validation on section 15 of the WSJ

corpus.

with explicit open bracket information preferred
larger left context and most formats with explicit
closing bracket information preferred larger right
context size. The three combinations of partial
representations systematically outperformed the
four complete representations. This is probably
caused by the fact that they are able to use two
different context sizes for solving two different
parts of the recognition problem.

In a second series of experiments we used a ” cas-
caded” classifier. This classifier has two stages
(cascades). The first cascade is similar to the clas-
sifier described in the first experiment. For the
second cascade we added the classifications of the
first cascade as extra features. The extra features
consisted of the left and the right context of the
classification tags. The focus chunk tag (the clas-
sification of the current word) accounts for the cor-
rect classification in about 95% of the cases. The
MBL algorithm assigns a large weight to this in-
put feature and this makes it harder for the other
features to contribute to a good result. To avoid
this we have refrained from using this tag. Our
goal was to find out the optimal number of ex-
tra classification tags in the input. We performed
5-fold cross-validation experiments with all com-
binations of left and right classification tag con-
texts in the range 0 tags to 3 tags. A summary of

the results can be found in table 3. We achieved
higher Fg— for all representations except for the
bracket pair representation.

The third experiment series was similar to the
second but instead of adding output of one ex-
periment we added classification results of three,
four or five experiments of the first series. By do-
ing this we supplied the learning algorithm with
information about different context sizes. This in-
formation is available to TBL in the rules which
use different contexts. We have limited ourselves
to examining all successive combinations of three,
four and five experiments of the lists (L=0/R=0,
1/1,2/2,3/3, 4/4), (0/1,1/2, 2/3, 3/4) and (1/0,
2/1, 3/2, 4/3). A summary of the results can be
found in table 4. The results for four representa-
tion formats improved.

In the fourth experiment series we have exper-
imented with a different value for the number of
nearest neighbors examined by the 1B1-1G algo-
rithm (parameter k). This algorithm standardly
uses the single training item closest to the test

3In a number of cases a different base configuration
in one experiment series outperformed the best base
configuration found in the previous series. In the sec-
ond series L/R=1/2 outperformed 2/2 for IOE2 when
chunk tags were added and in the third series chunk
tag context 1/1 outperformed 1/2 for IOB1 when dif-
ferent combinations were tested.



word/POS chunk tag combinations Fp=1

TOB1 3/3(k=3) 1/1 0/0(1) 1/1(1) 2/2(3) 3/3(3) | 90.89 + 0.63
I0B2 3/3(k=3) 1/0 3/3(3) 89.72 £+ 0.79
IOE1 2/3(k=3) 1/2 0/0(1) 1/1(1) 2/2(3) 3/3(3) | 90.12 + 0.27
IOE2 2/3(k=3) 0/1 2/3(3) 90.02 £+ 0.48
[+] | 4/3(3) +4/4(3) | 0/0 + 0/0 -+ - 90.08 + 0.57
[+10 | 4/3(3) + 3/3(3) | 0/0 + 1/1 | - + 0/1(1) 1/2(3) 2/3(3) 3/4(3) | 90.35 % 0.75
IO +]1(3/3(3) +2/3(3) | 1/1+0/0 | 0/1(1) 1/2(3) 2/3(3) 3/4(3) + - | 90.23 £ 0.73

Table 5: Results fourth experiment series: the best Fg—; scores for different combinations of left and
right classification tag context sizes for the seven representation formats using 5-fold cross-validation
on section 15 of the WSJ corpus obtained with I1B1-1G parameter k=3. IOB1 is the best representation
format but the differences with the results of the other formats are not significant.

item. However (Daelemans et al., 1999) report
that for baseNP recognition better results can be
obtained by making the algorithm consider the
classification values of the three closest training
items. We have tested this by repeating the first
experiment series and part of the third experiment
series for k=3. In this revised version we have
repeated the best experiment of the third series
with the results for k=1 replaced by the k=3 re-
sults whenever the latter outperformed the first
in the revised first experiment series. The results
can be found in table 5. All formats benefited
from this step. In this final experiment series the
best results were obtained with IOB1 but the dif-
ferences with the results of the other formats are
not significant.

We have used the optimal experiment configura-
tions that we had obtained from the fourth experi-
ment series for processing the complete (Ramshaw
and Marcus, 1995) data set. The results can be
found in table 6. They are better than the results
for section 15 because more training data was used
in these experiments. Again the best result was
obtained with IOB1 (Fg=1=92.37) which is an im-
provement of the best reported Fg—; rate for this
data set ((Ramshaw and Marcus, 1995): 92.03).

We would like to apply our learning approach
to the large data set mentioned in (Ramshaw and
Marcus, 1995): Wall Street Journal corpus sec-
tions 2-21 as training material and section 0 as
test material. With our present hardware apply-
ing our optimal experiment configuration to this
data would require several months of computer
time. Therefore we have only used the best stage
1 approach with IOB1 tags: a left and right con-
text of three words and three POS tags combined
with k=3. This time the chunker achieved a Fg—;
score of 93.81 which is half a point better than the
results obtained by (Ramshaw and Marcus, 1995):
93.3 (other chunker rates for this data: accuracy:
98.04%; precision: 93.71%; recall: 93.90%).

4 Related work

The concept of chunking was introduced by Ab-
ney in (Abney, 1991). He suggested to develop
a chunking parser which uses a two-part syntac-
tic analysis: creating word chunks (partial trees)
and attaching the chunks to create complete syn-
tactic trees. Abney obtained support for such a
chunking stage from psycholinguistic literature.

Ramshaw and Marcus used transformation-
based learning (TBL) for developing two chunkers
(Ramshaw and Marcus, 1995). One was trained
to recognize baseNPs and the other was trained
to recognize both NP chunks and VP chunks.
Ramshaw and Marcus approached the chunking
task as a tagging problem. Their baseNP training
and test data from the Wall Street Journal corpus
are still being used as benchmark data for current
chunking experiments. (Ramshaw and Marcus,
1995) shows that baseNP recognition (Fg=1=92.0)
is easier than finding both NP and VP chunks
(Fp=1=88.1) and that increasing the size of the
training data increases the performance on the
test set.

The work by Ramshaw and Marcus has inspired
three other groups to build chunking algorithms.
(Argamon et al., 1998) introduce Memory-Based
Sequence Learning and use it for different chunk-
ing experiments. Their algorithm stores sequences
of POS tags with chunk brackets and uses this in-
formation for recognizing chunks in unseen data.
It performed slightly worse on baseNP recognition
than the (Ramshaw and Marcus, 1995) experi-
ments (Fg=1=91.6). (Cardie and Pierce, 1998)
uses a related method but they only store POS
tag sequences forming complete baseNPs. These
sequences were applied to unseen tagged data af-
ter which post-processing repair rules were used
for fixing some frequent errors. This approach
performs worse than other reported approaches



accuracy | precision | recall Fp—1

I0B1 97.58% 92.50% | 92.25% | 92.37

10B2 96.50% 91.24% | 92.32% | 91.78

I0E1 97.58% 92.41% | 92.04% | 92.23

I0E2 96.77% 91.93% | 92.46% | 92.20

[+] - 93.66% | 90.81% | 92.22

[+ 10 - 91.47% | 92.61% | 92.04

10 +] - 91.25% | 92.54% | 91.89
(Ramshaw and Marcus, 1995) | 97.37% | 91.80% | 92.27% | 92.03
(Veenstra, 1998) 97.2% 89.0% 94.3% | 91.6
(Argamon et al., 1998) - 916 % | 91.6% | 91.6
(Cardie and Pierce, 1998) - 90.7% 91.1% | 90.9

Table 6: The Fg—; scores for the (Ramshaw and Marcus, 1995) test set after training with their
training data set. The data was processed with the optimal input feature combinations found in the
fourth experiment series. The accuracy rate contains the fraction of chunk tags that was correct. The
other three rates regard baseNP recognition. The bottom part of the table shows some other reported
results with this data set. With all but two formats 1B1-1G achieves better Fg—; rates than the best

published result in (Ramshaw and Marcus, 1995).

(Veenstra, 1998) uses cascaded decision tree
learning (IGTree) for baseNP recognition. This al-
gorithm stores context information of words, POS
tags and chunking tags in a decision tree and clas-
sifies new items by comparing them to the training
items. The algorithm is very fast and it reaches
the same performance as (Argamon et al., 1998)
(Fp=1=91.6). (Daelemans et al., 1999) uses cas-
caded MBL (1B1-1G) in a similar way for several
tasks among which baseNP recognition. They do
not report Fg—; rates but their tag accuracy rates
are a lot better than accuracy rates reported by
others. However, they use the (Ramshaw and
Marcus, 1995) data set in a different training-test
division (10-fold cross validation) which makes it
difficult to compare their results with others.

5 Concluding remarks

We have compared seven different data formats
for the recognition of baseNPs with memory-based
learning (1B1-1¢). The IOB1 format, introduced
in (Ramshaw and Marcus, 1995), consistently
came out as the best format. However, the dif-
ferences with other formats were not significant.
Some representation formats achieved better pre-
cision rates, others better recall rates. This infor-
mation is useful for tasks that require chunking
structures because some tasks might be more in-
terested in high precision rates while others might
be more interested in high recall rates.

The 1B1-1G algorithm has been able to im-
prove the best reported Fg—; rates for a stan-
dard data set (92.37 versus (Ramshaw and Mar-
cus, 1995)’s 92.03). This result was aided by us-

ing non-standard parameter values (k=3) and the
algorithm was sensitive for redundant input fea-
tures. This means that finding an optimal per-
formance or this task requires searching a large
parameter/feature configuration space. An inter-
esting topic for future research would be to embed
IB1-1G in a standard search algorithm, like hill-
climbing, and explore this parameter space. Some
more room for improved performance lies in com-
puting the POS tags in the data with a better
tagger than presently used.
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