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Abstract

We present computational linguistics techniques which can help researchers
dealing with the increasing amount of available digital text, focusing on
potential use in the history of science. We examine two tasks: automat-
ically extracting terms from documents and identifying relations between
the terms. We show that the two tasks can be performed reliably and fast,
and that new terms and relations can be identified automatically.

1 Introduction

In the recent decade, there has been a large increase in the amount of digital text
available. These new data collections offer great opportunities for researchers,
and this paper will sketch how INFORMATION EXTRACTION (IE) proceeds on
the basis of large reserves of text.

COMPUTATIONAL LINGUISTICS (CL) has sought to extract information au-
tomatically from increasingly large collections of texts for some time now. For
example, in a competition in 2007, participants were required to build systems
that process up to a million documents and from these documents, extract
answers to arbitrary questions. Twenty-two systems participated in the task
[Giampiccolo et al., 2007].

Typically, CL work processes articles from newspapers and encyclopedias.
Recently there has also been an increasing amount of work with documents from
the medical domain, and we shall focus on this domain in the present article as
its texts provide similar challenges as those of interest for historians of science.
In fact, there has been little work applying CL to texts used in other fields such
as history and literature.! We believe that CL can provide useful contributions
to these fields, but we shall not attempt to survey all the uses to which CL
techniques might be put in studying history or literature (but see Nerbonne
[2007] for remarks on applications of text classification), but focus rather on
how information is extracted about particular domains of inquiry.

It is worth noting that a great deal of the CL work is practically motivated
by the wish to provide flexible access to textual information and to organize
it in ways conducive to automatic reasoning. The fact that there is practical
motivation for the work suggests that it will continue, and presumably continue
to improve, even if its contribution to current history of science is quite modest.
This means that the field may be of strategic value to the HISTORY OF SCIENCE

1But see Cardie and Wilkerson [2008] for applications to political science and Hirst and
Feiguina [2007] for applications to literary scholarship.



in the longer term. A second consequence of the practical motivation is the wish
to quantify progress, and we shall return to this below (2).

This paper presents two examples of CL techniques that we believe could be
valuable to researchers who wish to track the content in large text collections:
automatic terminology extraction and automatic relation extraction. We advo-
cate exploring a closer cooperation between CL and studies in the history of
science, following Dibattista [2003], envisaging the potential value of the ability
to track technical vocabulary in a scientific field. This might concern the intro-
duction of novel terms or novel associations among existing terms as indications
of innovation; it might mean detecting other changes in technical vocabulary,
e.g., frequency changes, as indications of changes in scientific ideas, or at least,
changes in scientific attention; or, most ambitiously, it could mean deriving a
good deal of information about the ontology of a field automatically, where we
understand ontology to comprise the classes of objects studied and the relations
attributed among those objects. We present techniques aimed at deriving on-
tological information from medical texts in the remainder of this article. We
hope in this way to stimulate interest in CL techniques as they may be used in
studying the history of science.

After this introduction, we deal with terminology extraction in Section 2.
We will explain what techniques can be used for this task and look at term
variation and term labeling in more detail. In Section 3, we will look at relation
extraction. We will show how text patterns for relation extraction can be learned
from a few examples and how they can be evaluated. We will conclude in Section
4.

2 Term Detection

This section describes experiments in which terms were extracted automati-
cally from texts. We start by introducing the task and presenting a general
description of our system. After this, we present the data and the preprocessing
methods used in the experiment. Next, we discuss the extraction techniques
used in the experiments as well as their performance. The last sections present
two challenges for the extraction process: dealing with term variation and as-
signing labels to terms.

2.1 Introduction to Term Detection

There are several formulations of the meaning of TERMINOLOGY given in dic-
tionaries and encyclopedias. However, in general, they refer to terminology as
a study or a system of TERMS used in a special jargon, discipline, subject, or
context [Fahmi, 2008]. Formally, a term is defined as “a designation consisting
of one or more words representing a general concept in a special language” [ISO,
2000].

Terms are different from words. The most frequent method of term formation
is through combinations of existing lexical elements in particular ways [Sager,
1997]. However, Sager indicates that the formation of complex terms consisting
of two or more lexical elements is not always straightforward, since there is
no simple linguistic criterion for distinguishing between complex terms (e.g.,
high-density disk) and free-formed phrases (e.g., high pressure).
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Figure 1: Architecture diagram of the system used for the experiments described
in this paper.

Automatic term extraction uses computer programs to identify strings from
text that are potential terms [Fahmi, 2008]. This can be done completely auto-
matically or semi-automatically and is referred to as automatic term extraction,
semi-automatic term extraction, automatic term recognition, or term extraction.
In the rest of this paper, we call this process TERM EXTRACTION.

Automatic extraction of information from text is very important to many
applications, such as to information retrieval, question answering, and boot-
strapping or extending ontologies for the semantic web. Naturally, it would be
gratifying to see that research in pure science, such as the history of science,
political science, or literary studies, could benefit from techniques developed for
applied purposes.

In our own work on term and relation extraction, we use a modular system
which has been described in Figure 1. The system consists of four main processes
which will be discussed in this paper: Automatic Term Recognition (ATR,
Sections 2.3 and 2.4), Variation Detection (Section 2.5), Term Labeling (Section
2.6), and Relation Extraction (Section 3). Two more applications which will not
be discussed here, i.e., Ontology Building and Question Answering. For more
information on these two applications, we refer to Fahmi [2008].

In the ATR experiments, medical terms are extracted from sentences using
both linguistic and statistical approaches. The input sentences were automati-
cally enriched with a syntactic analysis by the Alpino parser (see Section 2.2).
The output of the ATR process is a set of candidate terms ranked by their
“termhood”, a score assigned by the process based on textual properties. We
apply a threshold to select elements with high termhood scores. We then label
these terms with medical semantic labels in the Term Labeling module. For
this purpose, we label candidates with semantic information from the Seman-
tic Type found in the Unified Medical Language System (UMLS), a collection
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Figure 2: A graphical display of the evaluation of information extraction. The
output of a system (Claims) is compared with data annotated by experts
(Truth). The results are rated by two scores: precision, the number of true
claims divided by the total number of claims, and recall, the number of true
claims divided by the total number of true data items.

of lists with definitions of medical terms. Among these terms, there are term
pairs which are each other’s synonyms. We detect these synonyms as well as
term abbreviations in the Variation Detection process (Figure 1). Two terms
are marked as related synonyms or related term-abbreviation pairs based on the
frequencies of their occurrences in prespecified text patterns in Web texts.

Terms and their semantic labels, together with candidate-relation triples
extracted from the parsed sentences, become inputs for the Relation Extraction
process (Section 3). To generate relation patterns, we use a subset of the corpus
whose sentences have been annotated manually with relation types. Based on
these patterns, we extract the candidate-relation triples from the rest of the
corpus. For example, we extract relation triples that can be used to generate
information tables for a Question Answering application, or extract concept and
relation instances for the Ontology Building process.

As we noted in the introduction, a great deal of the CL work on IE is prac-
tically motivated. This, together with the complexity of the task, has led to the
adoption of concrete measures of success. In the case of IE (and INFORMATION
RETRIEVAL) we compare the output of our systems with document collections
where the correct results of processing have been identified by experts in the
domain under investigation. If we are trying to identify terms in a particular
domain, then these will have been marked in the test collection. The list of
expertly annotated terms constitutes the “truth”, the putative terms we claim
to detect are claims, and our success can be measured on the basis of the pro-
portion between the intersection of these two, i.e. the “ true claims” on the
one hand and the claims but also the entire true set on the other. PRECISION
measures how much of what a system has detected, is true according to the
experts. Additionally, RECALL measures how much of the expert truths has
been found by the system. See Figure 2 for a sketch.

Note that precision and recall are normally inversely related to each other,
meaning that by accepting lower recall you can achieve higher precision and
vice versa. If, for example, one returns all possible candidates recall will be
100% (and precision infinitesimal). If, on the other hand, very few candidates
are proposed, precision is likely to benefit, while recall will suffer.



There are variants of this scheme used in cases where it is infeasible to
have test collections annotated completely, e.g. UNINTERPOLATED AVERAGE
PRECISION, which computes the precision of a each initial subset of a ranked
list of terms and outputs the average of all the precision scores [Manning and
Schiitze, 1999, 535ff]. In this case we need to specify the size of the ranked list,
for example of the first 500 elements and its uninterpolated average precision
(see Section 2.4).

2.2 Data and Preprocessing

In this section we describe the foundation of our term extraction work: the text
collection and the terminological resources as well as the automatic linguistic
analysis used for preprocessing the data. Our text collection has been built from
two Dutch medical texts, namely:

1. Elsevier’s medical encyclopedia: a medical encyclopedia intended for gen-
eral audience and containing 379K words.?

2. Dutch edition of the Merck Manual: a general-purpose medical handbook
intended for professionals and containing 780K words.>

The corpora are medical reference books and provide definitions for each
term, and for terms describing diseases also their symptoms, causes, diagnosis,
and treatment. Consider, for example, a translated article in the Dutch edi-
tion of the Merck Manual as shown in Figure 3. This article provides medical
information for the disease acute necrotizing gingivitis. Some substrings in the
article are printed in italic to indicate that they are also terms, for example,
Plaut-Vincent angina. Our term extraction task is aimed at extracting these
kinds of terms automatically.

For the medical domain, two sources of terminological or external knowledge
are available, i.e. UMLS (noted above), and a collection of small Dutch termi-
nologies collected from the Internet. Since UMLS contains few Dutch terms,
we translate new Dutch terms found in the corpus into English in order to get
semantic types from their matching terms in the UMLS. For the term extrac-
tion task in this section, we use both of the resources. This is a point where
applied research is pleased to exploit additional resources in order to optimize
performance. But naturally, one may not always expect to find such resources,
especially in connection with historical research. There it will be essential to
extract terms exclusively from texts.

2.3 Using Filters for Extracting Terms

The first step in the term extraction process is to find candidate terms in text
by looking for context patterns containing specific words or syntactic construc-
tions. These context patterns are called filters. In this section, we compare two
linguistic filters, namely a PART-OF-SPEECH (PoS) tag (or WORD CLASS) filter
and a syntactic filter.

2The encyclopedia was made available to us by Spectrum b.v., and can also be found online
at www.kiesbeter.nl/medischeinformatie/
3www.merckmanual.nl



ACUTE NECROTIZING GINGIVITIS

Acute necrotizing gingivitis (Plaut- Vincent agina, acute necrotizing ulcerative gingivitis)
is a painful, non-contagious infection of the gums which causes pain, fever and fatigue.
This disorder is also called trench mouth, a term from World War I when many soldiers
contracted the disease in the trenches. [...]

SYMPTOMS

Often acute necrotizing gingivitis start suddenly with painful gums, an uneasy feeling and
fatigue. Furthermore, there is bad breath. The gums are affected and are covered with
a gray layer of dead tissue. The gums start bleeding and eating and swallowing become
painful. Often the lymph glands start to swell while the patient experience a light fever

TREATMENT

The treatment starts with a careful but thorough cleaning of theteeth whilst the dentist
removes all dead tissue and dental plaque. This may require a local anesthetic. In the first
day after treatment, the patient may have to rinse the mouth with hydrogen peroxide-based
rinses (3% hydrogen perozide mixed with an equal amount of water) instead of brushing
the teeth. [...]

Figure 3: A translated article about acute necrotizing gingivitis disease in the
Dutch edition of the Merck Manual. The length of the first and third paragraphs
have been reduced.

A PoS tag filter is a rule which selects a prespecified sequence of word classes.
A basic example of such a rule is Determiner Adjective Noun. The use of PoS
tag filters has been widely reported by previous studies [Bourigault, 1992; Daille
et al., 1994; Justeson and Katz, 1995]. Some of these filters are very specific
such as the one in Dagan and Church [1994] that allows only Noun+ sequences.
The precision of this kind of filters is high, but since the filters do not allow
some prepositions that are frequently found in terms , such as of, their recall
would tend to be low. However, other filters such as the ones used in Justeson
and Katz [1995] allow more PoS tags and more possibilities of sequences. In
our experiment, we use the filter by Justeson and Katz [1995] because we want
to get a high recall, and let the next step (the statistical method, Section 2.4)
improve the precision.

We slightly modify the Justeson and Katz filter for Dutch by adding an
optional determiner to the original filter, because our terminology resources,
such as the ICD-9 DE (the Dutch edition of NCHS [1996]), include terms with
determiners (e.g., degeneration of the choroids and stenosis of the larynz, both of
which satisfy the PoS tag sequence filter Noun Preposition Determiner Noun).
We evaluate whether this addition will lead to better results or instead just
introduce more noise.

All our texts have been analyzed by a syntactic parser which has identified
syntactic structures such as noun phrases and verb phrases, as well as the re-
lations between these phrases. Since we have this syntactic information at our
disposal, we have also looked at the possibility of building syntactic filters. We
have extracted word sequences marked as noun phrases from the corpus and
selected these as candidate terms. For example, applied to the first sentence in
the Figure 3, this filter produces the following candidate terms:

e Acute necrotizing gingivitis Plaut-Vincent angina acute necrotizing ulcer-



ative gingivitis
e Acute mecrotizing gingivitis
e Plaut-Vincent angina acute necrotizing ulcerative gingivitis
e acute necrotizing ulcerative gingivitis
e painful non-contagious infection of the gums
e gums
e pain fever
® pain
o fever
e fatligue

The syntactic filter is more liberal than the PoS tag filter. It extracts candi-
date terms of any PoS tag sequence as long as the sequences are of category noun
phrase. As shown in this example, the filter extracts a very long noun phrase
(the first candidate, 10 words), which would not have been selected by the PoS
tag filter. The reason for this is that the automatic syntactic analysis ignores
punctuation signs such as commas and brackets while these are kept by the
PoS filter. The syntactic filter is able to extract nested candidate terms, such
as Acute necrotizing gingivitis and gums, which appear in longer noun phrases.
Despite the removal of punctuation signs by the preprocessing step, the filter is
able to identify the embedded noun phrase acute necrotizing ulcerative gingivitis
and suggest it as a candidate term.

We tested both filters and found that the PoS tag filter performed better
than the syntactic filter. The syntactic filter proposed more candidates (50,287—
45,449) but the PoS tag filter achieved higher precision (37%-20%) and recall
rates (62%-38%). Some examples of the proposed terms: illness (suggested
by both filters), kidney disorder (only proposed by the Syntactic filter) and
obstruction of movement (only found by the PoS tag filter).

2.4 Ranking Candidate Terms

In order to improve the precision of the term extraction process, we perform
a second step after filtering candidate terms from text. Working on candidate
terms consisting of two words, we rank candidates based on the frequencies
of the individual words and the strength of the statistical association between
them. We evaluate eight different methods for assessing association strength
using uninterpolated average precision (see Section 2.1) for the first 500 terms
as evaluation.

We calculated the association strengths using the output of the PoS filter.
The baseline method for candidate term ranking is frequency, which assigns a
higher rank to frequent word pairs. This approach achieved an uninterpolated
average precision score of 67%. Of the seven other methods that we evaluated,
the two best were chi-square (x?) and Dice’s coefficient [Manning and Schiitze,
1999, p.299]. Both achieved a precision score of 88% [Fahmi, 2008]. The same



three candidate terms appeared on the top of the two ranked lists: magnetic
resonance imaging, islets of Langerhans and sphincter of Oddi, all of which are
medical terms.

This approach works fine for terms consisting of two words. If candidate
terms contain more than two words, for example body mass indexr, we may
divide them into so-called pseudo bigrams. These are pairs of phrases which
may contain one word or more than words. For example, body mass index can
be divided in two pseudo-bigrams: body — mass index and body mass — index.
The statistical methods can be applied to both pairs and for each method we
choose the pair with the highest combined score.

The single-word candidate terms are a special challenge. The statistical
methods based on association strength are obviously inapplicable. A popular
alternative is to measure how specific the term is to a selection of texts. The
intuition is that domain-specific terms will occur more frequently in domain-
specific texts than in general texts. However, we refrained from using additional
general texts.

The method which we developed for ranking candidate terms that consist
of only one word, is based on the distribution of words in the ranked list of
candidate multiword terms. We chose a rank threshold (in the range 2000
6000) and labeled all terms with a frequency above this threshold relevant while
the rest were labeled general. Next, we designed a termhood score for single
words which prefers words which frequently occur in relevant terms over words
which frequently occur in general terms.

The candidate single-word terms were ranked according to the termhood
scores and the ranked list was compared with a term list extracted from an
annotated corpus. We compared five different rank threshold values and found
that the algorithm performed best with a threshold value of 4000. We measured
a precision of 56% at rank 9000, slightly better than the 54% achieved using the
baseline method, which only used term frequencies. The top three of the ranked
list of candidate terms associated with threshold value 4000 was doctor, year
and woman. The first and the third were regarded as correct medical terms.

Similar term ranking procedures will be needed if one is dealing with histor-
ical texts.

2.5 Term Variation

Two different terms may refer to the same concept. This is called term varia-
tion. For example, carcinoma and cancer are variants and can be used inter-
changeably. Depending on the domain, terminological variants are estimated to
account for 15-35% of the joint occurrence of the two (or more) terms involved
[Daille, 2003]. It is a well-known phenomenon that needs special treatment.
We wish to keep track of variants for several reasons, such as for indexing and
retrieval [Jacquemin, 2001], conceptual structuring [Daille, 2003], and enhanc-
ing term extraction [Nenadi¢ et al., 2004]. Besides occurrence in text, term
variations also occur in controlled terminological resources, such as UMLS.

We use variation recognition mainly to detect synonyms since they frequently
occur in our extracted relations. These synonyms are linked by coordinations
and need to be recognized correctly. Consider, for example, the following sen-
tence that contains a medical relation in our corpus:



Leprosy is a contagious disease caused by the leprosy bacillus “My-
cobacterium leprae” or “Hansen bacillus” named after the Norwe-
gian physician Armauer Hansen who discovered it in 1873.

The sentence contains synonymic variants of the term leprosy bacillus, namely
Mycobacterium leprae and Hansen bacillus. Medical text contains other frequent
variation types, namely acronyms and abbreviations. Consider, for example, the
following sentence from our corpus, which illustrates how acronyms also lead to
term variation:

Tuberculosis, abbreviated with TBC| or even TB, is formerly a very
dreaded disease caused by the bacterium “Mycobacterium tubercu-
losis”.

Fahmi [2008] discusses several types of term variations in different degrees
of detail. In this section, we investigate one type of variation: synonymy. We
describe our method for detecting synonymous words and evaluate the perfor-
mance of the methods using a medical corpus.

Our method for finding synonyms is adapted from the DIPRE method [Brin,
1999]. We use text patterns to find pairs of synonyms. We incorporate syntactic
information into patterns, as in Hearst [1992] and Pustejovsky et al. [2001]. The
syntactic information is mainly for detecting terms that occur in the corpus.

The synonym extraction method consists of three consecutive processes within
an iteration. The extraction starts with the injection of a small set of synonym
pairs as seeds. The seed pairs can be selected manually from the corpus. Each
pair is a tuple like <terml, term2> where termi and term2 are the seed syn-
onyms. Having a seed list, we apply the following steps, first to learn variation
patterns, and next to extract synonym pairs from the corpus:

Step 1 The process searches for the occurrence of the seed tuples in the corpus
and keeps the contexts surrounding the tuples. For example, from the
phrase tubercolosis (or TB ), the pattern X (or Y ) will be extracted.

Step 2 Next, the generated patterns are sought throughout the corpus to ex-
tract a new set of candidate synonym tuples that match the patterns.

Step 3 Then semantic compatibility scores are computed for the candidate
synonym pairs based on their occurrence in predefined phrases on Web
pages (see Fahmi [2008] for more details). The synonym pairs are ranked
based on their compatibility scores and pairs with scores below a certain
threshold are discarded.

Step 4 Finally, the extracted synonym pairs are used as a new seed list. The
four processing steps are repeated until the number of the extracted syn-
onym pairs satisfies an expected level of coverage or until no new pairs are
found.

As in Hearst [1992] and Brin [1999], the size of the initial seed list can be
very small, as few as 3 pairs can be sufficient. However, if the corpus is small, as
ours indeed is, the frequency of the seeds in the corpus can be very low as well.
They will generate a small number of synonym patterns, which subsequently



yield a small set of new synonym tuples. A possible solution to this problem is
to increase the size of the initial seed list.

The extraction approach has been applied to a medical corpus, a collection
of Dutch medical texts containing 57,004 sentences. We started with a seed list
of three synonym pairs, retina—netvlies (English: retina), septum—tussenschot
(nasal septum), and poliep —vleesboon (polyp). We compared two selection cri-
teria: one based on unrestricted cooccurrence (Pygar) and one based on cooc-
currence in prespecified text patterns (P,,.). Pygar found more pairs (699-233)
and achieved higher recall scores (85%—-70%) but P,,. obtained a higher precision
score (61%-98%). Interestingly enough, the two methods made different errors,
for example lens—cataract, suggested by P,,. and back—epidural, put forward by
Pnpagr. Fahmi [2008] contains more details.

2.6 Term Labeling

In the previous sections we have discussed approaches to term and variant recog-
nition. The output of these processes are terms ranked by termhood scores. At
this point, we do not know whether a term such as tuberculosis is a name of a
disease, treatment, or virus. These labels are assigned by the next processing
step, TERM LABELING or CLASSIFICATION.

The goal of term classification is to disambiguate terms. Term classifica-
tion may help to map a term to its position in an ontology or thesaurus, or
to understand the roles of a term in a relation (e.g., as actors, sources, ob-
jects) [Hatzivassiloglou et al., 2001]. This section describes approaches to term
classification and discuss their relevance to our tasks.

Term classification is often done with machine learning techniques. Many
of these techniques are based on statistical models, such as Hidden Markov
Models (HMMs) and naive Bayes. Other techniques, such as decision trees, rule
induction, support vector machines (SVMs), and genetic algorithms [Manning
and Schiitze, 1999] can also be used for classifying terms.

Our term classification work is inspired by Nobata et al. [1999]. They com-
pared two classification methods for classifying terms from MEDLINE abstracts,
one that used a statistical model and another that applied a decision tree. The
first method classified terms by computing the similarity of the terms to the
distribution of words in a preclassified word list from databases. Since a word
list is rarely complete, it can be extended with the output of a word clustering
process. The second method used several feature sets including PoS tags, mor-
phological information, and a list of words specific to the domain. They found
that for the four classes that they were interested in, the statistical method was
better in classifying terms from two classes while the decision tree performed
better for the other two classes.

An interesting fact of the work by Nobata et al. [1999] was that they used a
set of preclassified words from databases to classify terms from text. This is a
useful approach for labeling medical terms since large medical term databases
are available, like for example the UMLS Metathesaurus. It contains a large
number of preclassified terms (2.10 million terms or 4.7 million term class labels).
This decreases the problem of data sparseness, a problem involving lack of data
which often restricts a successful application of machine learning techniques.

We evaluated the performance of the method in labeling the 2000 most
frequent terms of the IMIX medical corpus with one of a set of eleven labels. The
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Data set training | testing
treats 4,251 15
has symptom 3,782 11
causes 3,136 21
has definition 3,496 11
diagnoses 1,103 25
occurs 942 28
prevents 429 10
All 56,654 350

Table 1: The relation types and the numbers of related sentences in the training
and test set of the IMIX medical corpus. Sentences counted in the test set were
positive examples among the 50 sentences randomly selected from the corpus.

system achieved an accuracy of 73.3%. Suprisingly enough, labeling multiword
terms was easier (78.2%) than labeling single word terms (72.6%). The approach
resulted in different accuracies for the eleven labels. The highest accuracy was
80.4% for the label disease symptom while the lowest was 34.8% for disease
feature.

3 Relation Extraction

This section deals with the use of dependency information to extract relations
from text. We pursue an approach in which we automatically learn text patterns
from sentences that contain related terms. On the basis of these patterns, we
extract new relation information from non-classified sentences. This method
is evaluated on two different corpora, namely the IMIX medical corpus and a
medical subset of the Wikipedia pages.

3.1 Resources

We use the IMIX medical corpus for learning relation patterns. The corpus
consists of texts from a medical encyclopedia and a medical handbook and was
described in Section 2.2. Human annotators identified and marked the terms and
the relations occurring in the texts. Fahmi [2008] presents the seven different
relation types that are present in the 57,004 labeled sentences. As shown in
Table 1, the number of occurrences of the different relations types varies. The
relation type treats is the most frequent while prevents is the least frequent.

For each relation, we randomly selected 50 sentences as test set. For the
purpose of the evaluation, we reannotated the test set: only sentences that con-
tain two fully specified arguments of the relation are considered to be relevant
instances of the relation. Note that, since relation labeling was done at text
level, information of a single relation may be spread over more than one sen-
tence. Because our preprocessing method operates on sentence level, we are
only interested in sentences which contain complete relations.

For testing the performance of the relation patterns, we used the text of
lemmas in the category Health Care from Dutch Wikipedia (105,088 sentences).
We parsed this corpus using the Alpino parser [van Noord, 2006], which results
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dependency structures accuracies
Relation type L1 L2 L3 L1 L2 L3
causes 942 1,625 647 | 95% 90% 5%
has definition 4,102 6,118 657 | 95% 65% 30%
occurs 548 2,219 1,238 | 90% 80% 50%
treats 300 1,826 1,026 | 85% 60% 45%
has symptom 1,220 2,668 850 | 80% 30% 0%
prevents 24 171 470 | 5%  50%  50%
diagnoses 34 265 231 | 60% 60% 35%
All 7170 14,892 5119 | 91% 60% 41%

Table 2: Number of dependency structures retrieved from the WIKIPEDIA corpus
and their estimated accuracies (from a random selection of 20) per relation with
2, 1 or 0 matching concept labels.

in dependency parse trees. As this material was not annotated, evaluation
of precision was performed by manually checking the output of the relation
extraction system.

We used a subset of 3,142,578 terms from the UMLS for classifying relation’s
arguments. 5% of the terms were in Dutch while the other 95% were in English.

3.2 Learning Relation Patterns

The first task in the relation extraction process is to find patterns that predict
term relations in text. We learn these patterns from the annotated IMIX corpus
in four steps:

1. First, we extract all annotated relation phrases from the texts, for example
RSI stands for repetitive strain injury. Each phrase is divided in three
parts: the two relation objects (RSI and repetitive strain injury) and the
remainder of the phrase (stands for), which will be the candidate pattern.

2. Next, we use linguistic methods for identifying the main parts of the two
relational objects (RST and injury) and use the term labeling process (Sec-
tion 2.6) for assigning labels to both (disease and disease).

3. Then, we collect the parses of each of the candidate patterns and compute
a weight for each of them based on how often they occur within a relation
phrase and how often they do not.

4. Finally, the weights are combined with the available labeling information
to produce weighted relation patterns of the format (type, label;, labels,
phrase, weight). An example of such a pattern is (definition, disease,
disease, stand for, 0.80). This specifies that a phrase linking two diseases
with stand for has an 80% chance to express the definition of the first
disease.
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3.3 Extracting Relations

We use the patterns (type, label;, labely, phrase, weight) for extracting new
pairs of concepts that are related by the relation of the same type. In order to
achieve this, we look in the corpus for dependency structures that contain the
phrases specified in the pattern as well as terms that can be labeled with labely
and labels.

Ideally, the semantic types of both arguments of the retrieved dependency
patterns match with both semantic types label; and labely. However, while
inspecting the data, we found some relevant triples that match neither or only
one of the two semantic types. Therefore, we have relaxed the selection criterion
and identified three different groups of relation supporting information:

Level 1: full match: the dependency structure matches the relation type and
both labels

Level 2: single label match: the dependency structure matches the relation
type and only one of the two labels

Level 3: relation-only match: the dependency structure matches only the re-
lation type and none of the two labels

This approach serves two goals. First, we hope to increase the recall of the
approach by relaxing the selection criterion. Second, we are interested in finding
out how well each of the three schemes performs, especially in comparison with
the other two schemes.

3.4 Evaluation

We evaluate our method using two resources described in section 3.1, namely the
IMIX medical corpus (IMIX) containing 57,004 sentences, and a medical subset
of Wikipedia (WIKIPEDIA) containing 105,088 sentences. The task is to learn
and to extract relations for the medical relation types in Table 1.

We distinguish two phases in this process. In the learning phase, we derive
the parameters (weights) of the extraction process from the annotated IMIX
CORPUS. In the extraction phase, we derive new pairs of related concepts from
the WIKIPEDIA corpus.

In the learning phase, we learn relation patterns from labeled sentences. We
generate a relation model containing relation patterns and the corresponding
scores. The IMIX corpus contains 3,136 training sentences. From them, we
derive 3,803 relation patterns. An example of such a pattern is disease is caused
by disease. The patterns do not occur frequently in the corpus. The example
pattern is the most frequent one with 23 occurrences. There are only 23 patterns
which occur six or more times.

For each of the seven relations causes, has definition, occurs, treats,
has symptom, prevents and diagnoses, and for each of the three extraction
levels, we randomly selected twenty dependency structures and manually eval-
uated their accuracy. The results can be found in Table 2. Extraction at level 1
(91% on average) proved to be much more accurate than at the other two levels
(60% and 41%). However, most correct pairs were found at level 2 (60%%14,982
= 8,989), so including this selection criterion will boost the recall score.
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An example of a correct pair proposed by level 1 is sepsis is caused by an
infection. An incorrect pair found by level 3 is fire is caused by a spark. This
example shows a frequent error in the output at level 3: the two concepts are
related but they do not fit in the target medical domain.

4 Conclusions and Future Prospects

We have illustrated Computational Linguistics (CL) applications on text aimed
at ontology extraction, examining both automatic term recognition and relation
extraction. Both applications are useful for researchers that need to detect the
content in large text reserves.

We have deliberately focused on information extraction (IE) in this snap-
shot of CL work on texts and how it might contribute to the history of science.
We should add that there is other CL work which might also be interesting,
e.g., work classifying the sorts of literature references used in scientific papers,
confirming, contradicting, distancing, etc. [Lenhert et al., 1990]. As a fur-
ther example of CL work with potential spinoffs for history and, in particular,
History of Science, we mention the substantial body of work on automatic sum-
marization of texts [Mihalcea and Ceylan, 2007, and references there]. There is
no room to present this work in detail here, but, in addition to needing to iden-
tify content, summarization work is concerned with identifying those focused
sections of texts in which novel contributions are identified succinctly.

But the work on information extraction is more likely to be interesting both
because there is a more substantial community of researchers involved, and also
because it provides a more direct reflection of the content of scientific papers.
Zhang et al. [2007] uses CL techniques on a body of texts on American history
to populate an ontology of historical events. It is a modest first step, but it
suggests that the collaboration between CL and History is promising.
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