Transfer Learning for Stance Analysis in COVID-19 Tweets

Erik Tjong Kim Sang, Marijn Schraagen, Shihan Wang, Mehdi Dastani Netherlands eScience Center / Utrecht University CLIN 31 - 9 July 2021

ederlands Englis

RIVM Committed to health and sustainability

↑ Topics About RIVM Publications International Contact

Search

Home > COVID 19 > Research on COVID 19 in the Netherlands > Applying behavioural science to COVID 19

Applying behavioural science to COVID-19

Preventive behaviour plays an important role in working together to gain control of the coronavirus SARS-CoV-2. Healthy behaviour is also vital in staying healthy during the coronavirus pandemic. Research on behaviour and health provides insights on how to help people keep following behavioural rules – with a focus on their own health and the people around them.

Study on behavioural measures and well-being

The measures taken by the government in the fight against the coronavirus have a major impact on the daily lives of everyone in the Netherlands. The government would like to know whether people can follow these rules, and what they think of them.

Table of contents

Study on behavioural measures and well-being

Round 12 (May 2021)

Round 11 (March 2021)

Round 10 (February 2021)

Round 9 (January 2021)

Round 8 (November 2020)

Round 7 (October 2020)

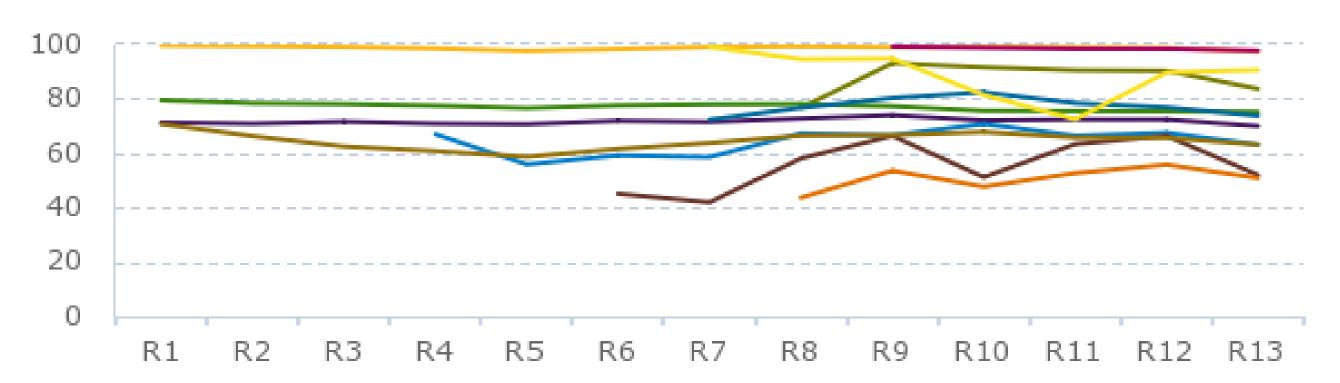
Round 6 (August 2020)

Round 5 (July 2020)

Round 4 (June 2020)

Verandering in het houden aan de (basis) gedragsregels

Meting 1 t/m 13



- hoesten/niezen in elleboog (1)
- geen handen schudden (2)
- mondkapje in openbaar vervoer (2)
- mondkapje in publieke binnenruimtes (2)
- niet op drukke plek geweest of elke keer omgekeer...
- testen bij klachten (2)
- thuisblijven bij klachten (2)
- handen wassen als het nodig is (1)
- voldoende afstand houden van anderen (1)
- thuiswerken (3)
- maximaal aantal bezoekers thuis (2)

Timeline

R1 17 - 24 April 2020

R2 7 - 12 May 2020

R3 27 May - 1 June 2020

R4 17 - 21 June 2020

R5 8 - 12 July 2020

R6 19 - 13 August 2020

R7 30 September – 4 October 2020

R8 11 - 15 November 2020

R9 30 December – 3 January 2021

R10 10 - 14 February 2021

R11 24 - 28 March 2021

R12 5 – 9 May 2021

R13 16 - 20 June 2021

Translation

- sneezing in elbow (1)
- not shaking hands (2)
- facemask in public transport (2)
- Facemask in public spaces (2)
- Avoid busy areas
- Test with symptoms (2)
- Stay at home with symptoms (2)
- Wash hands when necessary (1)
- Social distancing (1)
- Work at home (3)
- Maximum of home vistors (2)

(1) % of times; (2) % of participants; (3) % of work hours

Goal:

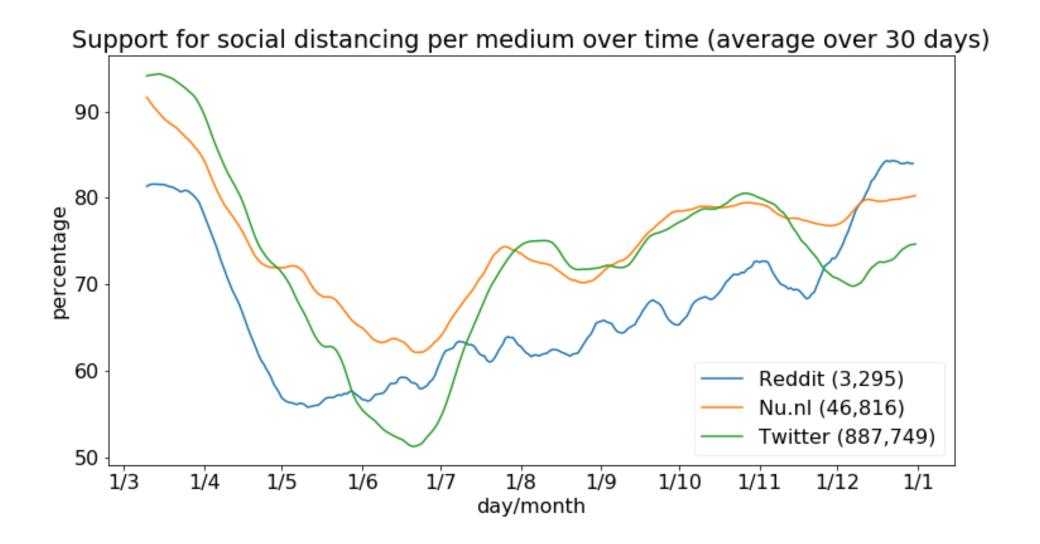
Derive stances on Dutch pandemic measures from social media data

Method

- 1. Select relevant data with keyword search
- 2. Estimate stances in data with machine learning
- 3. Visualize results

Challenge

We need annotated data on many topics



More information: https://github.com/puregome/notebooks

Approach: re-use annotated data for other topics: transfer learning / domain adaptation

We tested different approaches of transfer learning / domain adaptation:

TGTONLY: build models from (limited) in-domain data only (baseline)

SRCONLY: build models from out-of-domain data only

ALL: build models from both in-domain and out-of-domain data

RLVONLY: like ALL but only use relevant out-of-domain data

FEATAUG: like RLVONLY but use different features for in-domain and out-of-domain data (Daumé III, 2007)

Data, topics and keyword filtering

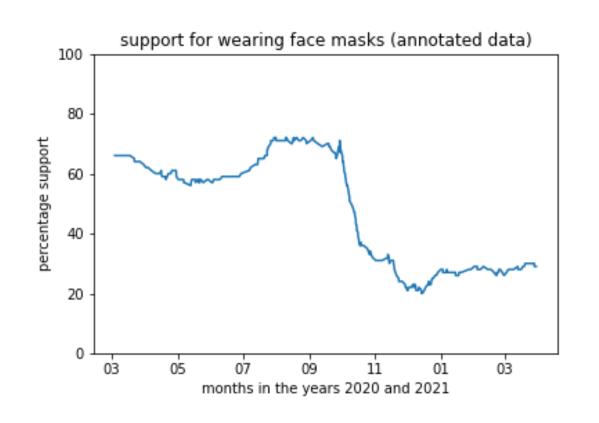
Topic	Number of tweets	Time frame
Dutch tweets	346,672,687	February 2020 – June 2021
Pandemic	41,175,162	February 2020 – June 2021
Face masks	1,847,245	February 2020 – June 2021
Social distancing	1,441,262	February 2020 – June 2021
Testing	3,831,931	February 2020 – June 2021
Vaccination	7,643,870	February 2020 – June 2021

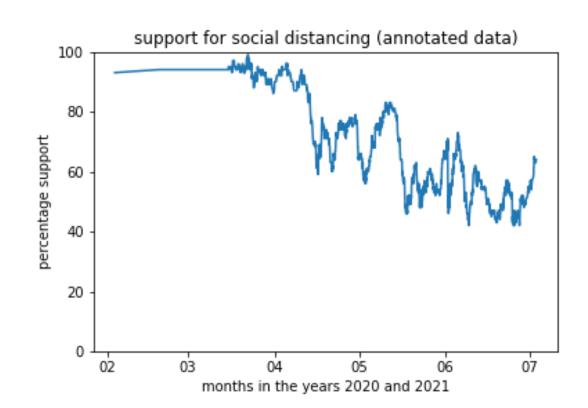
Topic	Keyword filter			
Face masks	mondkapje			
Social distancing	1[.,]5[-]*m afstand.*hou hou.*afstand anderhalve[-]*meter			
Testing	\btest getest sneltest pcr			
Vaccination	vaccin ingeënt ingeent inent prik spuit bijwerking > (emoji)			
	pfizer moderna astrazeneca astra zeneca novavax biontec			

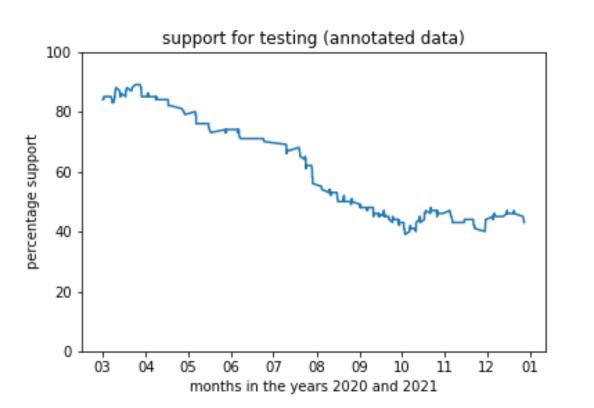
In the keyword filters, "|" stands for OR and "\b" represents a word boundary

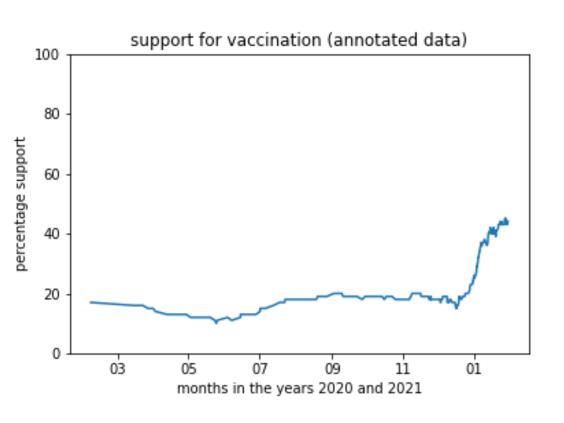
Data annotation

Topic	Tweets	Time frame	Supports	Rejects	Irrelevant
Face masks	1,011	March 2020 - March 2021	21.2%	23.6%	55.2%
Social distancing	5,977	February 2020 - July 2020	56.2%	20.0%	23.8%
Testing	1,181	March 2020 – December 2020	28.2%	17.8%	53.4%
Vaccination	1,007	January 2020 - January 2021	9.6%	24.3%	66.1%









Machine learning

For text classification we used the system FastText: a linear classifier which represents texts as an average of word vectors:

- Training started from a language model developed from 230 million Dutch tweets from the year 2020
- A limited grid search was done for finding the best parameters for the social distancing data
- Non-default parameter values used: vector length: 300, learning rate: 0.3, number of epochs: 200

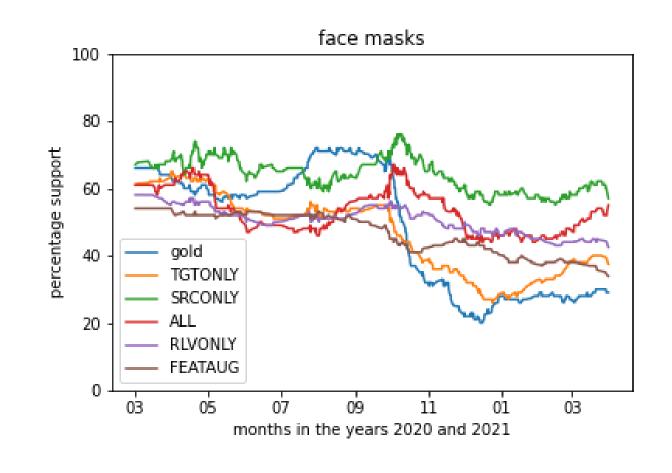
Accuracy	TGTONLY	SRCONLY	ALL	RLVONLY	FEATARG
Face masks	0.592	0.414	0.543	0.569	0.583
Testing	0.561	0.452	0.541	0.572	0.572
Vaccination	0.608	0.488	0.572	0.585	0.616
Social distancing	0.656				

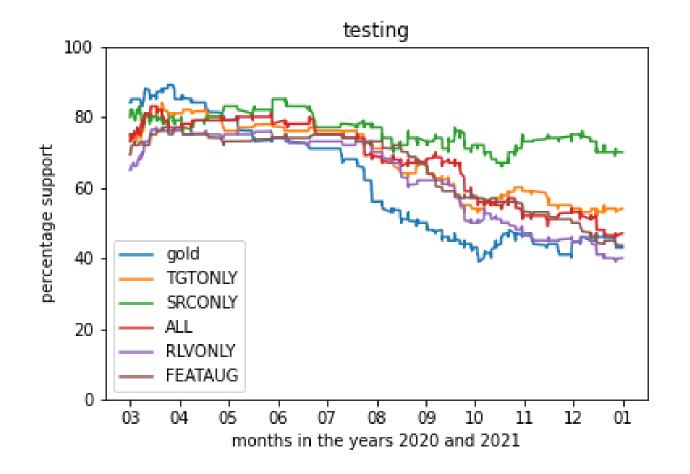
- SRCONLY and ALL perform poorly, because of inclusion of the relevance task
- RLVONLY does better: (1) selecting relevant tweets with in-domain data and then (2) determining stance with all tweets
- FEATARG performs even better: in step (2) use separate features for in-domain and out-of-domain data
- Absolute accuracy gains are small

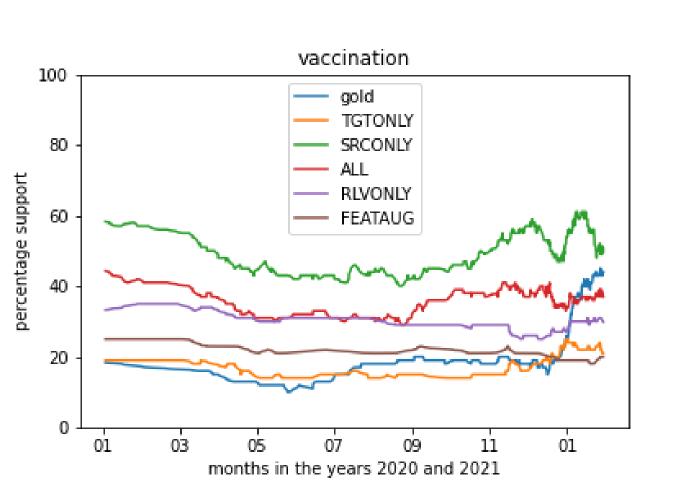
Graph-based assessment of transfer learning (annotated data graphs used as gold data)

Pearson r	TGTONLY	SRCONLY	ALL	RLVONLY	FEATARG
Face masks	0.877	0.533	0.435	0.743	0.806
Testing	0.949	0.819	0.882	0.856	0.848
Vaccination	0.361	0.586	0.592	0.528	-0.824

Absolute difference	TGTONLY	SRCONLY	ALL	RLVONLY	FEATARG
Face masks	0.080	0.177	0.143	0.133	0.125
Testing	0.093	0.169	0.097	0.087	0.102
Vaccination	0.078	0.260	0.149	0.107	0.102







Concluding remarks and future work

- We evaluated four transfer learning methods for predicting COVID-19 measure stances from social media data
- None of the methods consistently outperformed the baseline: using only in-domain data
- The problem with reproducing the vaccination graph suggests that it is important to have annotated in-domain data for all available time periods
- Future work: repeat the experiments with BERT as machine learner

