Approach

Memory-Based Named Entity Recognition

Erik Tjong Kim Sang
CNTS - Language Technology Group
University of Antwerp
Belgium

We have used the memory-based learning algorithm IB1-IG, a nearest-neighbor classifier.

Tokens have been represented by a set of features from a window of surrounding words (3 left/3 right) and substrings of the current and previous word.

en	Argentina	,	Arg	ina	е	n	B-LOC
${\sf Argentina}$	j	jugó	_	_	_	_	0
1	jugó	con	_	_	_	_	0
jugó	con	Del	_	_	_	_	0
con	Del	Bosque	_	el	С	n	B-PER
Del	Bosque	en	В	saue	De	1	J-PER

All training data is stored and test data is classified by taking the class of the training data item that is closest to them in the feature space.

CoNLL-2002 1

Tjong Kim Sang 01/09/2002 Tjong Kim Sang 01/09/2002

Creating word-internal features

Word-internal features were used in order to obtain extra clues about the classes of unknown words.

Prefix and suffix strings that were part of a words inside enties in 95% of the cases and occurred 10 times or more were selected as interesting features.

Similar prefix and suffix strings were selected for words appearing before a word inside a named entity.

With these four word-internal features, the error of the unlabelled entity recognition phase reduced with almost half.

Extra techniques used

The task was split in two parts: finding entity borders and classifying entities.

The following techniques were used for improving the performance of the base learning system:

- cascading (boosting)
- feature selection
- system combination

Development results

Train	Pass 1			Pass 2			
Repr.	$F_{eta=1}$	feature	s used	$F_{\beta=1}$	$\beta_{\beta=1}$ features used		ed
IOB1	85.86	W_20	$m_{fp,fs,ps}$	88.68	$w_{-2,0,1}$	t_1,1	$m_{fp,fs,ps}$
IOB2	82.14	W_{-21}	$m_{fs,pp,ps}$	84.39	w_{-11}	$t_{-2,-1,1}$	$m_{pp,ps}$
IOE1	85.86	W_{-20}	$m_{fp,fs,ps}$	88.76	$w_{-2,0,1}$	$t_{-1,1}$	$m_{fp,fs,ps}$
IOE2	77.18	W_{-22}	$m_{fp,fs,pp}$	83.50	$w_{-1,0,2}$	$t_{-1,1}$	$m_{fs,pp}$
O+C	80.33	0: w ₋₂₀	$m_{fp,pp,ps}$	84.08	0: w ₋₂₀		$m_{fp,pp,ps}$
		C: w_{-21}	m_{ps}		C: w ₋₁₂	$t_{1,2}$	m_{ps}
Voting	86.10	O: all		88.96	O: all		
		C: all			C: all		
Classes	72.29	$w_{-2,-1,s,f}$	$m_{s.s}$	74.34	$w_{-2,-1,s,f}$		$m_{s.s}$

The overall system was tuned to the training data only.

All three extra processing techniques helped improve performance (table shows results for Spanish).

CoNLL-2002 4

Tjong Kim Sang 01/09/2002

Results Dutch

Dutch test	precision	recall	$F_{eta=1}$
LOC	83.21%	73.28%	77.93
MISC	72.79%	64.45%	68.36
ORG	75.63%	54.50%	63.35
PER	65.72%	81.97%	72.95
overall	72.56%	68.88%	70.67

- No part-of-speech tags were used.
- A recent test with POS tags did not lead to a significant improvement (F = 70.85).
- Tests with gazetteers did not lead to improvements.

Results Spanish

Spanish test	precision	recall	$F_{\beta=1}$
LOC	76.01%	76.01%	76.01
MISC	63.70%	50.59%	56.39
ORG	76.45%	78.36%	77.39
PER	79.57%	81.09%	80.32
overall	76.00%	75.55%	75.78

- Reasonable results except for the MISC category.
- After removing some software bugs we managed an overall F rate of 76.69.

CoNLL-2002 5

Tjong Kim Sang 01/09/2002

Concluding remarks

- A memory-based learning system was applied to the CoNLL-2002 shared task.
- Extra processing techniques (cascading, feature selection and system combination) all helped to improve performance.
- Using word-internal features turned out to be very useful.
- Neither POS tag information nor gazetteers helped to improve performance (yet).