Learning Simple Phonotactics

Erik F. Tjong Kim Sang
Center for Dutch Language and Speech
University of Antwerp
Belgium
erikt@uia.ua.ac.be

John Nerbonne Alfa-informatica, BCN University of Groningen The Netherlands nerbonne@let.rug.nl

overhead sheets: http://lcg-www.uia.ac.be/~erikt/talks/

TKSN 3

Results orthographic data representation

	non-initialized		initialized	
	positive	negative	positive	
HMM	98.9%	91.0%	98.9%	94.5%
ILP	99.2%	60.0%	97.8%	97.7%
SRN	100.0%	8.3%	100.0%	4.8%
baseline	99.2%	60.2%		

Results phonetic data representation

	non-initialized		initialized	
	positive	negative	positive	negative
HMM	99.1%	98.3%	99.1%	99.1%
ILP	99.2%	70.6%	99.2%	98.3%
baseline	99.2%	71.6%		

Note: these results come from [Tjo98]. The results in the paper are 10-cv results for the same data set.

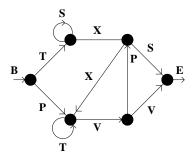
Goal

Examine application of machine learning algorithms for deriving natural language knowledge.

Task

Deriving models for the phonotactic structure of monosyllabic Dutch words:

 $\begin{array}{lll} bad & \mapsto & GOOD \\ crwth & \mapsto & BAD \\ mlod & \mapsto & BAD \\ teen & \mapsto & GOOD \\ zachtst & \mapsto & GOOD \end{array}$


Research Questions

- 1. What machine learning technique generates the best models?
- 2. What is the influence of knowledge representation on the performances?
- 3. Does initial language knowledge improve the results?

TKSN 4

SRN performance explanation

[Cle93]: SRNs are able to recognize Reber grammar strings with 100% accuracy.

However, the performance will degrade when the complexity of the grammar is increased:

complexity	positive	negative
2	100.0%	100.0%
3	100.0%	92.2%
4	100.0%	82.2%

Cause: signal/noise ration in network goes down when the grammar becomes more complex.

Concluding remarks

- 1. What machine learning technique generates the best models?
- → HMMs and ILP produce good models; SRNs don't.
- 2. What is the influence of knowledge representation on the performances?
- → The models generated for phonetic data are nearly always better than the models generated for orthographic data.
- 3. Does initial language knowledge improve the results?
- → Yes, the availability of initial linguistic knowledge improves the performance, especially in the case of ILP.

Address

Address: Center for Dutch Language and Speech

University of Antwerp Universiteitsplein 1 B-2610 Wilrijk Belgium

telephone: +31 3 8202765

WWW: http://lcg-www.uia.ac.be/~erikt/

References

[Cle93] Axel Cleeremans. *Mechanisms of Implicit Learning*, The MIT Press, 1993. ISBN 0-262-03205-8.

[Tjo98] Erik F. Tjong Kim Sang, *Machine Learning of Phonotactics*, PhD thesis University of Groningen, The Netherlands, 1998. http://lcg-www.uia.ac.be/~erikt/mlp/

Overhead sheets

http://lcg-www.uia.ac.be/~erikt/talks/