Goal

Noun Phrase Recognition by System Combination

Erik Tjong Kim Sang Center for Dutch Language and Speech University of Antwerp erikt@uia.ua.ac.be Finding a better learning method for recognizing noun phrases (NPs).

Inspiration

The project Learning Computational Grammars in which seven European sites apply machine learning methods for NP recognition: http://lcg-www.uia.ac.be

[HZD98] and [BW98] which show that POS tagger performance can be improved by combining the output of different systems.

ANLP-NAACL 2000 1

 Erik Tjong Kim Sang
 01/05/2000
 Erik Tjong Kim Sang
 01/05/2000

Recognizing NPs

There are two variants of this task. The first consists of recognizing non-recursive NPs (baseNPs):

In [early trading] in [Hong Kong] [Monday] , [gold] was quoted at [\$ 366.50] [an ounce] .

The second consists of recognizing arbitrary NPs:

In [early trading] in [Hong Kong] [Monday] , [gold] was quoted at [[\$ 366.50] [an ounce]] .

A recognizer for the second variant can work bottomup.

Classifier combination

Suppose we use five learning algorithms for predicting whether an NP starts at a certain position or not.

	c_1	c_2	c_3	c_4	c_5	correct
$word_1$						
$word_2$	[[[[[
$word_3$						
$word_4$	[[[[
$word_5$			[
$word_6$	[[[[[
$word_7$	[
$word_8$		[[[

We can combine the results with majority voting: choose the result that has been predicted most often.

Obtaining different classifiers

How do we obtain results for different classifiers?

1 Use different learning algorithms.

Disadvantage: most algorithms require a lot of tuning in order to get a reasonable performance.

2. Use one learning algorithm with different parameters or with different versions of the data.

Disadvantage: the errors made by these systems are more related and therefore there is fewer improvement to gain.

We have chosen the second method and have applied one learning algorithm to five different NP representations.

ANLP-NAACL 2000 4

Erik Tjong Kim Sang 01/05/200

Machine learning methods

IB1IG

memory-based learner which classifies new items based on their similarity with training data items and uses information gain for determining feature weights.

IGTREE

decision tree learner which classifies new items based on their similarity with training data items and uses information gain for determining feature weights.

These learning methods are part of TiMBL which is available for non-commercial research purposes from http://ilk.kub.nl

Different NP representations

	IOB1	IOB2	IOE1	IOE2	0	С
In	0	0	0	0	•	•
early	1	В	l	l	[•
trading	1	1	1	Ε]
in	0	0	0	0		•
Hong	1	В	1	1	[•
Kong	1	1	Е	Е]
Monday	В	В	1	Е	[]
,	0	0	0	0		•
gold	1	В	l	Ε	[]
was	0	0	0	0		•
quoted	0	0	0	0		•
at	0	0	0	0		•
\$	1	В	1	1	[•
366.50	1	1	Е	Е]
an	В	В	1	1	[•
ounce	1	1	1	Е	•]
	0	0	0	0	٠	٠

ANI P-NA ACL 2000 5

Erik Tjong Kim Sang 01/05/2000

Combination methods

We compare five different voting methods and four versions of stacked classifiers:

Majority voting

Each classifier gets one vote. The majority wins.

Tot Precision, Tag Precision, Precision-Recall

The weight of each classifier is determined by its performance on some held-out part of the training data.

TagPair

Uses weights for results which are associated with results of classifier pairs.

Stacked classifiers

A second classifier processes the results and determines the most probable classification.

Results

train	Ο	-
Representation	. .	
IOB1	98.01%	98.14%
IOB2	97.80%	98.08%
IOE1	97.97%	98.04%
IOE2	97.89%	98.08%
O+C	97.92%	98.13%
Simple Voting		
Majority	98.19%	98.30%
TotPrecision	98.19%	98.30%
TagPrecision	98.19%	98.30%
Precision-Recall	98.19%	98.30%
Pairwise Voting		
TagPair	98.19%	98.30%
Memory-Based		
Tags	98.19%	98.34%
Tags + POS	98.19%	98.35%
Decision Trees		
Tags	98.17%	98.34%
Tags + POS	98.17%	98.34%
,		

Results standard baseNP data sets

section 20	precision	recall	$F_{\beta=1}$
Majority	93.63%	92.89%	93.26
[MPRZ99]	92.4%	93.1%	92.8
[TV99]	92.50%	92.25%	92.37
[RM95]	91.80%	92.27%	92.03
[ADK98]	91.6%	91.6%	91.6

section 00	precision	recall	$F_{eta=1}$
Majority	95.04%	94.75%	94.90
[TV99]	93.71%	93.90%	93.81
[RM95]	93.1%	93.5%	93.3

Results standard NP data set

section 20	precision	recall	$F_{\beta=1}$
Majority	90.00%	78.38%	83.79
[CoNLL99]	91.28%	76.06%	82.98

ANLP-NAACL 2000 8 ANLP-NAACL 2000

Erik Tjong Kim Sang

Erik Tjong Kim Sang 01/05/2000

Error analysis

Estimated cause of errors in the tenth section of the training data as processed in the first baseNP experiment (false positives and false negatives):

FPos	FNeg	
28 %	29 %	POS error
16 %	18 %	Problem with conjunction
15 %	12 %	Punctuation mark attachment
11 %	12 %	Split NPs or combined neighbors
5 %	4 %	Adverb attachment
3 %	3 %	NPs containing to
3 %	1 %	Error in NP segmentation
0 %	2 %	NP consisting of $that$
19 %	19 %	Unknown

Major error causes are the POS tagging preprocessing stage and hard cases.

01/05/2000

1. Combining classifiers improves performance for NP recognizers.

Concluding remarks

- 2. In this experiment setup, the simple majority voting performs as well as any other evaluated combination method.
- 3. Our error reduction is smaller (8% compared with our best individual classifier) than in the POS tagger experiment of [HZD98] (19%).

Future work

Repeat this work while using different learning algorithms.