Drawing Isogloss Lines

Harald Hammarstrom

17 Sep 2014, Amsterdam

Drawing Isogloss Lines

An isogloss is the geographical boundary of a certain linguistic feature, ... such as the pronunciation of a vowel, the meaning of a word, or use of some syntactic feature (Wikipedia 8 June 2010)

- Widely used in dialectology
- Example, pin/pen merger as of Labov (1997):

http://www.ling.upenn.edu/phono_atlas/maps/Map3.html

Approaches to Isogloss Lines

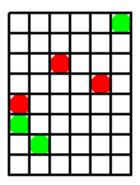
There appears to be no objective definition of an isogloss line, let alone an automated procedure for drawing one

- Dialectologists today draw isogloss lines by hand, based on intuition (p.c. Bert Vaux 2010)
- If you know of formal approaches to drawing isogloss lines, do let us know!
- This is involves a certain amount of subjectivity
- Today we will suggest a plausible definition and a procedure for actually drawing the line that fits the definition

Problem Setting #1: Input

Given:

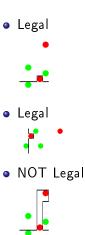
- 2D grid map with
- rings ("red") and crosses ("green") and empty positions



Problem Setting #2: "Line" Assumptions

Assumptions about a "line":

- A line is not necessarily a straight line
- But, either
 - Runs from the west end to the east end on the map, crossing each column at exactly once OR
 - Runs from the north end to the south end on the map, crossing each row at exactly once



Some Labelling Conventions

For any line on the map separating rings and crosses, label (by majority) one of the sides the rings-side and the other the crosses-side

- Let x be the number of points (either rings or crosses) on the crosses side
- Let o be the number of points (either rings or crosses) on the rings side
- A correctly classified point is a ring that occurs on the rings-side (c_x) or a cross that occurs on the cross-side c_o
- A misclassified point is a ring that occurs on the crosses-side (m_o) or a cross that occurs on the rings-side (m_x)

Definition of an Isogloss Line

Absolute-Optimal The line that maximizes the total number of correctly classified points. I.e. the line that maximizes

$$c_{x} + c_{o}$$

(Equivalent to minimizing $m_x + m_o$)

Proportion-Optimal The line that maximizes the *proportion* of correctly classified points to the total number of points, on both sides.

I.e. the line that maximizes

$$\frac{c_x}{x} + \frac{c_o}{o}$$

(Equivalent to minimizing $\frac{m_x}{x} + \frac{m_o}{o}$)

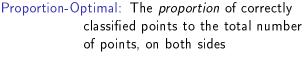
Example

Absolute-Optimal: The total number of correctly classified points

$$i c_x + c_o = 2 + 2 = 4$$

ii
$$c_x + c_o = 3 + 2 = 5$$

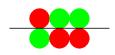
So line (ii) is better.

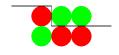


$$\frac{c_x}{x} + \frac{c_o}{o} = 2/3 + 2/3$$

ii
$$\frac{\hat{c}_x}{x} + \frac{\hat{c}_o}{o} = 3/3 + 2/3$$

So line (ii) is better.





First Question: Equivalence

Are the two definitions equivalent?

For all possible 2D maps with rings and crosses, do the two definitions always yield the same isogloss line(s)?

Counterexample

Х Χ Χ Х Χ Χ 0 0 Χ 0

0

a

b

- The optimal cut for a-isogloss lines has one misclassified x
- The optimal cut for b-isogloss lines has 3/3+11/13=1.846 which is better than the a-line (5/6+10/10=1.83)

So the two definitions a/b are not equivalent

Algorithms for Finding Isogloss Lines

- For an input map of width x and height y
- A defining a line amounts to setting the height of the line at each column (east-west) or setting the breadth of the line at each row (north-south)
- There are y^x logically possible east-west lines and x^y logically possible north-south lines
- Although there are exponentially many lines, there exist
 - A linear-time $O(x \cdot y)$ algorithm for absolute-optimal isogloss lines
 - A polynomial-time $O((x \cdot y)^3)$ algorithm for proportional-optimal isogloss lines

An Algorithm for Absolute-Optimal Isogloss Lines

- For each column C_i
 - For each height H_j
 - **3** Compute the number of correctly classified instances in column C_i if the (segment of) the line were at height H_i
 - 2 Take the height with the max of all height-scores in column C_i
 - Glue together the final isogloss line from the max-score heights of each column
 - North-south lines and opposite majority sides by simple rotations
 - Computes the absolute-optimal line because every column makes an independent contribution to the score to be optimized

An Algorithm for Proportion-Optimal Isogloss Lines

- Keep a list R of c_x, x, c_o, o -combinations encountered so far, and a corresponding line (segment) for each
- **1** Expanding horizon rightwards, for each column C_i
 - For each combination of a point in R and a height H_j in column C_i , calculate new c_x , x, c_o , o-combinations
 - Set R to this (new) list of combinations
- $oldsymbol{\circ}$ Take the max-scoring combination of the final total R

Algorithm for Proportion-Optimal Isoglosses: Example Run

C	H	C Counts	Aggregated Counts
0	1	0/5 1/1	0/5 1/1: 1
0	2	1/5 1/1	1/5 1/1: 2
0	3	2/5 1/1	2/5 1/1: 3
0	4	3/5 1/1	3/5 1/1: 4
0	5	3/5 0/1	3/5 0/1: 5
0	6	4/50/1	4/5 0/1: 6
0	7	5/5 0/1	5/5 0/1: 7
1	1	0/0 2/2	3/5 3/3: 4-1, 1/5 3/3: 2-1, 2/5 3/3: 3-1, 4/5 2/3: 6-1, 0/5 3/3: 1-1,
1 1	2	0/0 2/2	3/5 3/3: 4-2, 1/5 3/3: 2-2, 2/5 3/3: 3-2, 4/5 2/3: 6-2, 0/5 3/3: 1-2,
1	3	0/0 2/2	3/5 3/3: 4-3, 1/5 3/3: 2-3, 2/5 3/3: 3-3, 4/5 2/3: 6-3, 0/5 3/3: 1-3,
1	4	0/0 2/2	3/5 3/3: 4-4, 1/5 3/3: 2-4, 2/5 3/3: 3-4, 4/5 2/3: 6-4, 0/5 3/3: 1-4,
1	5	0/0 2/2	3/5 3/3: 4-5, 1/5 3/3: 2-5, 2/5 3/3: 3-5, 4/5 2/3: 6-5, 0/5 3/3: 1-5,
1	6	0/0 1/2	3/5 2/3: 4-6, 1/5 2/3: 2-6, 2/5 2/3: 3-6, 4/5 1/3: 6-6, 0/5 2/3: 1-6,
1	7	0/0 0/2	3/5 1/3: 4-7, 1/5 1/3: 2-7, 2/5 1/3: 3-7, 4/5 0/3: 6-7, 0/5 1/3: 1-7,
2	1	0/0 2/2	1/5 5/5: 2-[1 2 3 4 5]-1, 4/5 3/5: 6-6-1, 3/5 5/5: 4-[1 2 3 4 5]-1,
2	2	0/0 2/2	1/5 5/5: 2-[1 2 3 4 5]-2, 4/5 3/5: 6-6-2, 3/5 5/5: 4-[1 2 3 4 5]-2,
2	3	0/0 2/2	1/5 5/5: 2-[1 2 3 4 5]-3, 4/5 3/5: 6-6-3, 3/5 5/5: 4-[1 2 3 4 5]-3,
2	4	0/0 2/2	1/5 5/5: 2-[1 2 3 4 5]-4, 4/5 3/5: 6-6-4, 3/5 5/5: 4-[1 2 3 4 5]-4,
2	5	0/0 2/2	1/5 5/5: 2-[1 2 3 4 5]-5, 4/5 3/5: 6-6-5, 3/5 5/5: 4-[1 2 3 4 5]-5,
2	6	0/0 1/2	1/5 4/5: 2-[1 2 3 4 5]-6, 4/5 2/5: 6-6-6, 3/5 4/5: 4-[1 2 3 4 5]-6,
2	7	0/0 0/2	1/5 3/5: 2-[1 2 3 4 5]-7, 4/5 1/5: 6-6-7, 3/5 3/5: 4-[1 2 3 4 5]-7,
	İ		
5	6	0/0 1/2	2/5 2/11: 3-7-7-7-6, 4/5 7/11: 6-[1 2 3 4 5]-7-[1 2 3 4 5]-[1 2 3 4 5]-6;
5	7	0/0 0/2	2/5 1/11: 3-7-7-7-7, 4/5 6/11: 6-[1 2 3 4 5]-7-[1 2 3 4 5]-[1 2 3 4 5]-7;

Algorithm for Proportion-Optimal Isoglosses: Example R

С		l <u>.</u>			Bottom Colour
-0	R 14	Top It			
U	14	1.60	3/5 1/1	4	red
		1.40	2/5 1/1	3	red
		1.40	1/1 2/5	5	green
1	38	1.67	5/5 2/3	7-[1 2 3 4 5]	red
		1.67	2/3 5/5	1-7	green
		1.60	3/5 3/3	4-[1 2 3 4 5]	red
2	62	1.80	5/5 4/5	7-[1 2 3 4 5]-[1 2 3 4 5]	red
		1.80	4/5 5/5	1-7-7	green
		1.60	5/5 3/5	7-6-[1 2 3 4 5];	red
				7-[1 2 3 4 5]-6	
3	86	1.86	6/7 5/5	1-7-7-7	green
		1.86	5/5 6/7	7-[1 2 3 4 5]-[1 2 3 4 5]-[1 2 3 4 5]	red
		1.71	5/7 5/5	1-7-6-7; 1-7-7-6; 1-6-7-7	green
4	110	1.89	8/9 5/5	1-7-7-7-7	green
		1.89	5/5 8/9	7-[1 2 3 4 5]-[1 2 3 4 5]-[1 2 3 4 5]	red
				-[1 2 3 4 5]	
		1.78	7/9 5/5	1-7-7-6-7; 1-7-7-7-6; 1-6-7-7-7;	green
			, ,	1-7-6-7-7	0
5	134	1.91	5/5 10/11	7-[1 2 3 4 5]-[1 2 3 4 5]	red
			,,	-[1 2 3 4 5]-[1 2 3 4 5]-[1 2 3 4 5]	
		1.91	10/11 5/5	1-7-7-7-7-7	green
		1.82	9/11 5/5	1-7-7-7-6; 1-7-7-6-7;	green
				1-6-7-7-7; 1-7-6-7-7; 1-7-7-6-7-7	-

Algorithm for Proportion-Optimal Isoglosses: Analysis

- Guaranteed to compute the proportion-optimal line
- The list R grows only polynomially in the size of the input
- Why?
 - When only the counts of correctly classified/total number of points are considered (not their positions) there are only polynomially many configuration
 - The size of the grid is $x \cdot y$
 - Every position in the grid is either empty or one of four possibilities: a ring on the rings side, a ring on the crosses side, a cross on the cross side or a cross of the rings side.
 - The number of ways to divide $x \cdot y$ squares into four different categories is $O(\binom{x \cdot y + 1}{3})$.

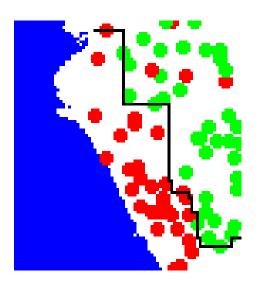
Real Example: Restricted Numeral Systems

- A numeral system is "restricted" iff
 - Monomorphemic numerals exist only up to 2 or 3 AND
 - Higher quantities are expressed orally only inexactly, or up to ca 10 with additions of 1, 2 and 3 (possibly including ad hoc use of 'hand' for 5).
- Suppose we want to know if the border of restricted numeral system coincides with the extent of the Amazon forest

Optimal Isogloss Lines

- Absolute-optimal line east-west (left, 48 misclassifications)
- Absolute-optimal line north-south (right, 34 misclassifications).
- Proportion-optimal lines are nearly identical

Zoom on Andean-Amazon Divide



- The isogloss lines for the South American numeral data gives a fairly consistent Andean-Amazonian boundary
- But includes the Chaco and Southern Cone regions of South America in "Amazonian" part
- The border may be studies more closely for non-linguistic correlates to the boundary line

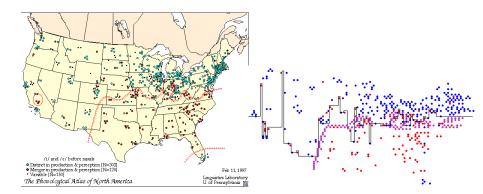
Extensions and Generalizations

- More than one isogloss line?
 - Tractable
- More than two input colours?
 - Tractable
- More than one variable?
 - Possibly not tractable

More than one isogloss line?

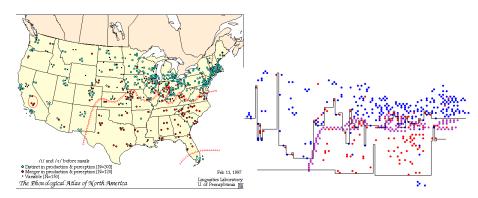
- A natural extension is to draw more lines after the first one
 - Split the map into two parts according to the first line
 - Compute the optimal line in the two parts separately
 - Select the better scoring line of the two
- The more lines drawn the closer to a rote solution

Example #1



- Human drawn isogloss map has one major line, a smaller line at the bottom and a circle
- The major line is very similar to (both the absolute and proportion) optimal isogloss line

Example #2



- The smaller line at the bottom very similar to the 2nd optimal isogloss line
- The more lines drawn the closer to a rote solution

More than two input colours isogloss line?

- More than two input colours?
 - For n colours
 - Do *n* binarizations where all colours except one are merged
 - Compute the optimal isogloss line for the *n* binarizations separately
 - Keep the line which is optimal across the binarizations
- Proceed with the 2nd, 3rd, etc as per the previous slide, if needed

More than one variable?

- Suppose we have n different binary variables v_i defined for each language
- Suppose we want to find the line such that
 - The sum \sum_{c_i} is maximized
 - Where c_i is the number of units of v_i that are well-classified by the line
- I suspect this introduces a complexity of $O(2^n)$ to the problem because of the indeterminacy over which is the majority side (bottom or top) for each v_i

Conclusions

- A natural definition of a the optimal isogloss line
- Algorithms for finding the optimal isogloss lines
- Impressionistically similar to isogloss lines drawn by human intuition
- Some theoretical and practical extensions unsolved/unexplored

Thank you

